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ABSTRACT
In this paper, we present a framework for mining diverging
patterns, a new type of contrast patterns whose frequency
changes significantly differently in two data sets, e.g., it
changes from a relatively low to a relatively high value in one
dataset, but from high to low in the other. In this frame-
work, a measure called diverging ratio is defined and used to
discover diverging patterns. We use a four-dimensional vec-
tor to represent a pattern, and define the pattern’s diverging
ratio based on the angular difference between its vectors in
two datasets. An algorithm is proposed to mine diverging
patterns from a pair of datasets, which makes use of a stan-
dard frequent pattern mining algorithm to compute vector
components efficiently. We demonstrate the effectiveness
of our approach on real-world datasets, showing that the
method can reveal novel knowledge from large databases.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications – data mining; I.5.2
[Pattern Recognition]: Design methodology – pattern anal-
ysis

General Terms: Experimentation

Keywords: Diverging patterns, contrast patterns

1. INTRODUCTION
Contrast patterns are those patterns that capture impor-

tant and significant differences or changes between two or
more sets of data in the same domain. Such patterns are use-
ful for identifying distinguishing characteristics of data and
can also be used to build powerful classifiers [10, 7]. A num-
ber of promising methods have been proposed to discover
contrast patterns, including emerging pattern mining [6, 2],
contrast set mining [4], and some other methods for min-
ing complex types of contrasts [11, 14, 12]. However, most
of the methods use support and/or confidence measures to
evaluate the differences between datasets and do not con-
sider the timestamps associated with the occurrences of a
pattern. Thus, they cannot discover important differences
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Table 1: Simple gene expression data sets
normal disease

G1 G2 G3 G4 G1 G2 G3 G4
t01 1 0 1 0 1 1 1 0
t02 0 1 1 1 0 1 1 1
t03 1 1 1 0 0 1 1 0
t04 1 1 1 1 1 0 0 1
t05 1 1 0 1 1 1 1 1
t06 1 1 1 1 1 0 0 1
t07 0 1 0 1 1 1 1 1
t08 1 1 0 1 1 1 1 0
t09 1 1 0 0 1 0 1 1
t10 1 1 1 1 0 0 1 0
t11 0 1 1 0 0 1 1 1
t12 1 1 1 1 1 1 0 1
t13 1 1 0 0 1 1 1 1
t14 1 1 1 1 0 1 0 1
t15 1 0 0 1 1 1 1 1
t16 1 1 0 0 1 1 0 0
t17 0 1 1 0 1 1 1 0
t18 1 0 0 1 1 1 1 1
t19 0 1 1 0 1 0 1 1
t20 1 0 0 1 1 1 1 0

in a pattern’s temporal trends in different data sets. Let’s
see the following example.

Suppose we have a pair of simplified gene expression data
sets, normal and disease, which record the expression lev-
els of four genes (G1, ..., G4) in normal and diseased tis-
sues during a biological process over a series of time-stamps
(t01, ..., t20), as shown in Table 1. Each cell represents the
expression level of a certain gene at a certain time-stamp,
whose value is represented by 0 or 1. If a gene is up or
down regulated at a specific time-stamp, the corresponding
element takes a value of 1; otherwise, the value is 0. Let
us consider the gene set {G1, G2}. Because its frequency is
exactly the same ( 11

20
= 0.55) in both data sets, it cannot

be considered as a contrast pattern based on the support-
confidence framework. However, interesting differences of
the gene set between these two data sets can be found af-
ter we take into account the time information in the data
sets. We can easily see that before (and including) t10 in the
normal data set, {G1, G2} appears 7 times; but after t10,
{G1, G2} only occurs 4 times. That is to say that the fre-
quency of {G1, G2} in normal decreases significantly from
70% to 40% after t10. On the contrary, the frequency of
{G1, G2} in disease increases significantly from 40% to 70%.

This observation asserts that a pattern might have signif-
icantly different distributions between two data sets, even
though it has a subtle frequency-difference in the data sets.
This motivates our research in this paper to identify a new
class of contrast patterns to capture their significant dis-
similarities between the data sets, especially those patterns
whose frequency changes in opposite directions, e.g., it changes
from a relatively low to a relatively high value in one data
set, but from high to low in the other.



The main contributions of this paper are as follows. First,
we propose a framework for mining diverging patterns, a new
type of contrast patterns whose frequency changes in differ-
ent directions in a pair of data sets. Second, we define a mea-
sure, called diverging ratio, to capture the frequency-change-
difference of a pattern in two data sets. The measure uses a
four-dimensional vector to represent a pattern in a data set
and is defined based on the angular difference between its
vectors in two data sets. Third, an algorithm is proposed
to mine diverging patterns from a pair of data sets. The
algorithm makes use of a standard frequent pattern mining
algorithm to compute relevant vectors efficiently. Finally,
we perform experiments on real-world data sets to show the
effectiveness of mining diverging patterns.

2. DIVERGING PATTERN
Let I = {i1, i2,. . . , im} be a set of m distinct items. A

subset X ⊆ I is called an itemset or a pattern. A transaction
over I is a couple T = (tid, I) where tid is the transaction
identifier (or time-stamp) and I ⊆ I is an itemset. A trans-
action T = 〈tid , I〉 is said to support an itemset X ⊆ I, if
and only if X ⊆ I . A transaction database D over I is a set
of transactions over I.

The cover of an itemset X in D, denoted as cov(X, D),
consists of the set of transactions in D that support X, i.e.,
cov(X,D) = {〈tid, I〉 | 〈tid, I〉 ∈ D, X ⊆ I}. An itemset
X in a transaction database D has a support, denoted as
sup(X, D), which is the proportion of transactions in D
containing X. That is, sup(X,D) = |cov(X,D)|

|D| , where |S| is

the cardinality of set S .

2.1 Definition of weight

Definition 1. Assuming that the transactions in a trans-
action database D are ordered by their transaction identi-
fiers (or time-stamps), the position of a transaction T in D,
denoted as ρ(T , D), is the number of transactions whose
transaction identifier (or time-stamp) is less than or equal
to that of T . Thus, 1 ≤ ρ(T , D) ≤ |D|.

Below we define the weight of a pattern in a database
to capture the general distribution of the pattern in the
database.

Definition 2. The weight of a pattern X in a database D,
denoted as −→ω (X, D), is defined as a four-dimensional vector:

−→ω (X,D) = 〈w1(X,D), w2(X,D), w3(X,D), w4(X,D)〉,
where w1(X,D) is the sum of the normalized distances from
the transactions containing X in the first half of D to the
beginning of D, which is defined as:

w1(X,D) =

P

T ∈cov(X,D){ρ(T ,D)|ρ(T ,D) <
|D|+1

2
}

|D|
;

w2(X,D) is the sum of the normalized distances from the
transactions containing X in the first half of D to the middle
position of D, which is defined as:

w2(X,D) =

P

T ∈cov(X,D){�
|D|+1

2
� − ρ(T ,D)|ρ(T ,D) < |D|+1

2
}

|D|
;

w3(X,D) is the sum of the normalized distances from the
transactions containing X in the second half of D to the
middle position of D, which is defined as:

w3(X,D) =

P

T ∈cov(X,D){ρ(T ,D − � |D|
2
�|ρ(T ,D) > |D|+1

2
}

|D|
;

and w4(X,D) is the sum of the normalized distances from
the transactions containing X in the second half of D to the
end of D, which is defined as:

w4(X,D) =

P

T ∈cov(X,D){|D|+ 1− ρ(T ,D)|ρ(T ,D) > |D|+1
2
}

|D|
.

In w2(X,D) and w3(X,D), �x	 rounds x to the smallest
integer that is greater than x.

For example, the weight of pattern G1G2 in the normal
database in Table 1 is 〈2.25, 1.6, 0.45, 1.2〉. It tells that in
the normal database the frequency of G1G2 is low at the
beginning of the database, but starts to increase in the first
half of the database, and achieves its highest value before
the middle point of the database, but it becomes lower and
lower in the second half of the database. Thus, a weight
vector captures the general frequency-changing directions of
a pattern in a database.

2.2 Definition of diverging ratio
We are interested in finding patterns whose frequency

changes significantly differently in two databases. For this
purpose, we need to measure the difference between the
weight of a pattern in one database and its weight in the
other.

Based on the cosine measure, we define a measure of dis-
tance between two weight vectors as follows.

Definition 3. The diverging ratio of a pattern X between
datasets D1 and D2, denoted as div(X), is defined as:1

div(X) := 1 −
−→ω (X,D1) • −→ω (X,D2)

‖−→ω (X,D1)‖ × ‖−→ω (X,D2)‖
. (1)

where u • v is the dot product of two vectors u and v, and
‖v‖ is the magnitude of the vector v.

It’s easy to see that the diverging ratio is between 0 and
1. The higher the diverging ratio, the bigger the angle be-
tween −→ω (X, D1) and −→ω (X, D2), and thus the greater the
frequency-change difference of X between the two datasets.

2.3 Definition of diverging pattern
We are interested in finding patterns whose diverging ratio

is large, which is defined as follows.

Definition 4. A pattern X is a Diverging Pattern (DP)
with respect to a pair of transaction databases D1 and D2,
if the following conditions hold:

(1) sup(X,D1) ≥ ts and sup(X,D2) ≥ ts;

(2) div(X) ≥ td;

where ts and td are called pattern support threshold and
diverging ratio threshold, respectively.

3. MINING DIVERGING PATTERNS
In this section, we present an algorithm, called DP-mine,

for mining the set of diverging patterns from a pair of datasets.
1: Call FP-weight(D1, ts) to compute (1) the set F1 of frequent

patterns from D1 with min sup = ts and (2) for each fi in
F1, w1(fi,D1), w4(fi,D1), c(fi,D1) and c1(fi,D1), where
c(fi,D1) and c1(fi,D1) are the support counts of fi in D1

and the first half of D1 respectively.

1We omit D1 and D2 whenever it is clear from the context.



2: Call FP-weight(D2, ts) to compute (1) the set F2 of frequent
patterns from D2 with min sup = ts and (2) for each fi in
F2, w1(fi,D2), w4(fi,D2), c(fi,D2) and c1(fi,D2), where
c(fi,D2) and c1(fi,D2) are the support counts of fi in D2

and the first half of D2 respectively.
3: S ← F1

T

F2

4: SDP ← ∅
5: for all P ∈ S do
6: Compute w2(P,D1) and w3(P,D1);
7: Compute w2(P,D2) and w3(P,D2);
8: Compute div(P );
9: if div(P ) ≥ td then

10: SDP ← SDP
S

{P}
11: end if
12: end for
13: return SDP

There are two major phases in this algorithm. During the
first phase (Step 1 and Step 2), all frequent itemsets in the
two datasets along with their support counts, support counts
in the first half of the databases and two of their weight
components are derived using FP-weight (to be discussed
below), with ts as the minimum support threshold. In the
second phase (starting from Step 3 to the end), the algorithm
finds all the diverging patterns between the datasets based
on the set of frequent itemsets. In Step 3, patterns that are
frequent in both D1 and D2 are collected in set S . From step
5 to 10, for each pattern in S the algorithm first computes
the two other weights that were not calculated in FP-weight
based on the weights and support counts collected in FP-
weight. Then it computes the diverging ratio of the pattern
based on the pattern’s weights in the two datasets. If the
pattern’s diverging ratio is greater than or equal to td, the
pattern is a diverging pattern and is added into the set SDP ,
which is the output of the algorithm.

The computation of the two remaining weight components
in Steps 6 and 7 is done as follows:

w2(X,D) = c1(X,D)× � |D|+ 1

2
� −w1(X,D), and

w3(X,D) = (c(X,D)− c1(X,D))× � |D|+ 1

2
� − w4(X,D).

where c1(X,D), c(X,D), w1(X,D) and w4(X,D) were cal-
culated by FP-weight in Steps 1 and 2. It is trivial to prove
that the above relations hold according to Definition 2.

The FP-weight function extends the FP-growth algorithm [8]
to find all the frequent patterns from a dataset and at the
same time to compute two of the weight components of each
frequent pattern together with the pattern’s counts in the
whole and first half of the database. The FP-growth algo-
rithm first constructs a FP-tree, which maps each transac-
tion into a path of the tree, while keeping only the frequent
items. Each tree node is associated with the count of trans-
actions that contain the items on the path from the root to
the node. To incorporate weight computation into the min-
ing process, we also associate each node with three other
fields: w1, w4 and c1, where w1 holds the sum of the dis-
tances between the beginning of the dataset and the transac-
tions in the first half of the database which contain the items
on the path from the root to the node, c1 holds the number
of such transactions, and w4 holds the sum of the distances
between the end of the dataset and the transactions in the
second half of the dataset containing the items on the path
from the root to the node. During the FP-tree building pro-
cess, when processing a transaction T , if the count value of
a node is incremented by 1, we also add ρ(T ,D) to the w1

field of the node and increment the count in the c1 field if T

Table 2: Characteristics of data sets
data # of # of # of # of # of
set items trans FPs joined FPs DPs

A1 497
18451 906

555 28A2 41151 854
B1 3340

44760 9235
1322 26B2 32752 4794

C1 1657
223957 27791

24414 1874C2 291640 27957
M1 294

19096 1731
1554 0M2 13615 1837

R1 16470
36251 3032

1882 80R2 51911 2803
ts = 0.2% td = 0.3

A = BMS-WebView-1 M = MSweb
B = BMS-WebView-2 R = Retail
C = BMS-POS

is in the first half of the data set (i.e., ρ(T ,D) < |D+1|
2

); if

ρ(T ,D) > |D+1|
2

), |D|+ 1− ρ(T ,D) is added to the w4 field
of the node. Thus, after the tree is built, the w1, w4 and
c1 fields hold their corresponding values for the the whole
dataset. During the recursive mining process of FP-growth,
whenever there is a need to compute the count of a pattern
in a conditional pattern base, w1, w4 and c1 of the pattern
are computed in the same way.

4. EXPERIMENTAL EVALUATION
We conducted experiments on several real-world data sets

with different characteristics, as shown in Table 2. The
first three data sets2 were contributed by Blue Martini Soft-
ware as the KDD Cup 2000 data [15]. BMS-WebView-1
and BMS-WebView-2 contain several months worth of click-
stream data from two e-commerce web sites. BMS-POS con-
tains several years worth of point-of-sale data from a large
electronics retailer. Data in MSweb3 was obtained from
UCI Machine Learning Repository. It records the use of
www.microsoft.com by 38000 anonymous, randomly-selected
users. For each user, the data lists all the areas of the web
site that the user visited in one week. Retail4 is taken from
the Frequent Itemset Mining Implementations Repository.
It contains the (anonymized) retail market basket data from
an anonymous Belgian retail store [5]. For each data set, we
randomly select a split point between the 30th and 70th
percentiles of the data to partition the data set into two
disjoined subsets. For example, BMS-WebView-1 is parti-
tioned into A1 and A2, where A1 contains the first 18,451
transactions and A2 contains the last 41,151 transactions.

The last three columns of Table 2 list the number of fre-
quent patterns in each subset, the number of patterns that
are frequent in both subsets, and the number of diverging
patterns generated from each pair of data sets, with ts =
0.2% and td = 0.3, respectively. As can be seen, when the
pattern support threshold is low, a huge number of frequent
patterns can be generated from these data sets. In contrast,
the number of diverging patterns discovered by our approach
is generally much smaller. Note that the number of diverg-
ing patterns discovered from a pair of data sets depends on
the underlying distributions of patterns in the two data sets.
Our approach enables us to identify those frequent patterns
that are actually different between the two data sets but
cannot be distinguished by frequent pattern mining.

2http://www.ecn.purdue.edu/KDDCUP/data/
3http://kdd.ics.uci.edu/databases/msweb/msweb.html
4http://fimi.cs.helsinki.fi/data/retail.dat



Table 3: Selected diverging patterns
Pattern sup(X, D1) sup(X, D2) −→ω (X, D1)

−→ω (X, D2)
div(X)

(X) (%) (%) (%)
A{309, 314} 2.56 1.78 〈40.9, 10.6, 110.1, 74.9〉 〈127, 0, 204.5, 7.1, 26.9〉 70.0
B{429, 1130} 0.25 0.36 〈2.0, 0.5, 38.8, 13.7〉 〈13.6, 29.9, 8.5, 7.5〉 66.7
C{880, 1189} 0.21 0.31 〈82.0, 96.5, 24.0, 32.5〉 〈53.8, 26.7, 182.5, 183.0〉 50.9

R{39, 48, 389} 0.38 0.35 〈5.4, 5.1, 49.4, 9.6〉 〈20.0, 40.0, 15.1, 16.9〉 52.2

We conducted the K-S test [13] on all the diverging pat-
terns discovered from the above five databases with ts =
0.2% and td = 0.3. The results show that the distributions
of each discovered diverging pattern in the two correspond-
ing datasets are significantly different with p-values less than
1%. Table 3 describes some discovered diverging patterns
(one for each dataset with discovered diverging patterns)
in terms of their support values (column 2 and 3), weights
(column 4 and 5), and diverging ratio (column 6).

We also conducted the experiments with other support
and diverging ratio thresholds. As expected, at any fixed
diverging ratio threshold (or pattern support threshold), the
number of generated diverging patterns decreases with the
increase of the pattern support threshold (or diverging ratio
threshold). We also tested the scalability of DP-mine. Our
result indicates that DP-mine has linear scalability against
the number of transactions. Detailed results are omitted due
to the space limit.

5. RELATED WORK
Discovery of useful distinguishing features between data

sets is an important objective in data mining. The concept
of Emerging Patterns was first introduced in [6] to capture
changes or differences between data sets. An Emerging Pat-
tern (EP) is defined as an itemset X satisfying growthrate(X) =
sup(X,D2)
sup(X,D1)

≥ g, where D1, D2 are two different data sets

and g > 1 is called the growth rate threshold. Several vari-
ants of emerging patterns have been introduced, with Jump-
ing Emerging Patterns (JEPs) being the most important
one [10]. JEPs are emerging patterns with infinity growth
rate. Since a JEP can only be found in one distinct class
in the database, it is a good indicator of that class. Other
variants of emerging patterns include strong emerging pat-
terns (which are emerging patterns with all subsets being
emerging patterns) and the Most Expressive JEPs (which
are the minimal JEPs) [10]. Different from diverging pat-
terns, emerging patterns do not consider how frequency of a
pattern changes within a dataset and how this change differs
from the change in another dataset.

The problem of contrast-set mining was introduced in [3,
4], and the STUCCO algorithm was proposed to efficiently
search through the space of contrast-sets. Contrast-sets are
defined as conjunctions of attributes-value pairs that dif-
fer meaningfully in their probabilities across several groups.
They can be used to identify differences between groups.
Follow-up work in [14] discovered that existing commercial
rule-finding system, Magnum Opus, can successfully per-
form the contrast-set task. The authors concluded that
contrast-set mining is a special case of the more general rule-
discovery task. None of the above work addresses the prob-
lem of finding patterns whose frequency changes in different
directions in two contrast data sets.

6. CONCLUSIONS

We have defined a new type of contrast patterns, called di-
verging patterns, to represent the patterns whose frequency
changes significantly differently in two contrast data sets.
We use a four-dimensional vector to represent each pattern,
and define the pattern’s diverging ratio based on the angular
difference between its vectors in two datasets. Furthermore,
an algorithm called DP-mine is developed, which makes use
of a standard frequent pattern mining algorithm to compute
relevant vectors efficiently. Finally, we present experimental
results on real-world data sets, showing that DP-mine can
effectively and efficiently reveal new and interesting knowl-
edge from large databases.
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