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ABSTRACT
The major challenge in mining data streams is the issue of
concept drift, the tendency of the underlying data genera-
tion process to change over time. In this paper, we propose
a general rule learning framework that can efficiently handle
concept-drifting data streams and maintain a highly accu-
rate classification model. The main idea is to focus on partial
drifts by allowing individual rules to monitor the stream and
detect if there is a drift in the regions they cover. A rule
quality measure then decides whether the affected rules are
inconsistent with the concept drift. The model is accord-
ingly updated to only include rules that are consistent with
the newly arrived concept. A dynamically maintained set of
instances deemed relevant to the most recent concept is also
kept at memory. Learning a new concept from a larger set
of instances reduces the variance of data distribution and
allows for a more accurate, stable classification model. Our
experiments show that this approach not only handles the
drift efficiently, but it also can provide higher classification
accuracy compared to other competitive approaches on a
variety of real and synthetic data sets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
data mining

General Terms
Algorithms

Keywords
Concept Drift Detection, Rule Induction, Classification

1. INTRODUCTION
One of the challenges in data stream classification is that

the underlying data generation process of a stream tends
to change over time, a phenomenon called concept drift. A
model learned from an earlier part of stream loses its classi-
fication accuracy upon the arrival of new instances that ex-
hibit concept drift. As a result, any classification algorithm
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that is to be applied to data streams must be adjusted to
effectively detect the concept drift when it occurs, and ef-
ficiently update the classification model to reflect the new
concept.

A common, and perhaps most intuitive, metric of detect-
ing drifts is classification accuracy. A drop in the classi-
fication accuracy of the current classifier on the new data
signals a possible drift, which in turn requires updating the
current model. Since classification accuracy is dependent on
the structure of the entire model, to observe a noticeable
drop in accuracy, a drift should sufficiently affect a major
part of the model. However, drifts are likely to be partial,
affecting only particular regions of the data. Such partial
drifts, especially if small in magnitude, may go unnoticed
by model-level metrics like classification accuracy. Instead,
it is beneficial to have a metric that can monitor data on a
particular region, and sensitive enough to detect changes in
that region. Such metric allows for detection of partial as
well total drifts.

Upon detecting a concept drift, the classification model
must be updated to reflect the information available from
the new instances. To make the effect of the recent in-
stances more prominent, it is important to forget some of
the older, irrelevant instances. The commonly utilized slid-
ing window strategy [14, 10] imposes a sliding window on
the data stream and provides the content of the window
to the classifier. As the window moves forward, new in-
stances are inserted into and old instances are dropped out
of the window. The advantage of this method is that the
classification algorithm is always provided with the most re-
cent data instances, reflecting the most recent concept. It
is not trivial to decide on the number of instances a window
should contain [14, 10]. If the window is small, the learned
classification model becomes specific and sensitive to noise
or data variation within the same concept. If the window
size is large, the classification model becomes generalized
and provides robustness to noise but may show reluctance
to adapting to new concepts. Furthermore, a window based
strategy does not take the relevance of instances into ac-
count. Old instances are not necessarily irrelevant to the
current concept, and may still provide useful information
for the new concept. As a result, a forgetting strategy that
forgets instances solely based on their time stamps is infe-
rior in performance to a strategy that takes the relevancy of
those instances into account.

In light of these observations, we provide a novel approach
for handling concept drifts using a rule induction frame-
work. In this framework, instead of monitoring the incoming
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stream from a classifier perspective, we move down to indi-
vidual rules, and use them for detection of partial changes
in the stream. Each rule is further augmented with a mea-
sure of quality that decides if an affected rule has become
inconsistent with respect to the new concept, and the model
maintains only the rules that are consistent with the current
concept. Our method also aims to provide the classification
algorithm with the instances that are considered both rel-

evant to the current concept. Inclusion of recent instances
reduces the variance of data distribution and allows for con-
struction of a more stable, accurate classification model.

The contributions of this paper are as follows:

• We propose a novel rule learning framework for detect-
ing and handling partial drifts in data streams.

• We propose a few metrics that can be used to detect
drifts in local regions of data.

• We use the concept of rule quality and introduce how it
can be used to determine rule inconsistency on emerg-
ing concept.

• We further use the rule qualities and the rules them-
selves to judge the relevance of past instances to the
current concept to provide the classification algorithm
with the most relevant and recent instances.

• Using an extensive set of experimental studies, we show
that our method can quickly react to concept drifts,
construct highly accurate classification model, and of-
fer time and space efficiency.

Paper Organization. In section 2 we look at some related
work. Section 3 formally defines concept drift, and intro-
duces our proposed measures of detecting drifts. Section 4
discusses our instance forgetting strategy, and section 5 de-
scribes the model updating procedure, followed by the gen-
eral description of the framework section 6. An extensive set
of experiments is provided in section 7. Finally, we conclude
the paper in section 8.

2. RELATED WORK
CVFDT [7] is a stream classification algorithms that grows

alternative tree branches when a sub-tree becomes out of
date. Once the classification accuracy of the new sub-tree
surpasses that of the outdated one, the former replaces the
latter.

A powerful classification technique is the Ensemble ap-
proach [12], which is applied to sequential chunks of data.
A classifier is learned separately on every data chunk, and
each classifier is then assigned a weight inversely propor-
tional to its expected classification error. Classification is
done by a voting process where each classifier decides on
the label of testing instances and a weighted score decides
the class.

RePro [15] maintains a history of concepts in memory
and examines the accuracy of the them on the emerging in-
stances. If a high performing model on the new data can be
found, then the current model is replaced with it. Otherwise,
a new model is learned based on the new data. Although
many concepts are historically stored, RePro does not use
their knowledge during the classification process. It seems,
considering the data is stored anyway, a more collaborative
approach using all the concepts would provide better results.

The KL-divergence method [5] is a statistical approach
that compares two separate batches of data, uses the KL-
divergence measure to calculate the distribution distance
between them, and applies bootstrapping to decide if the
change is statistically significant. A statistically significant
change suggests occurrence of a concept drift. The entropy
based detection method [11] calculates the change in entropy
of two windows of instances. If the change exceeds certain
thresholds, then a drift is detected.

3. CONCEPT DRIFT DETECTION

3.1 Definitions
Concept drift is defined as a change in the underlying

data generation process. In the context of classification,
concept drift is the change in statistical properties of the
target variable, which the model is trying to predict, over
time [1]. In this context, the term concept refers to the
quantity we aim to predict.

Let x be an instance in an m-dimensional feature space
and ci a class label where i ∈ {1, 2..., k}. The objective of
classification is to find ci that maximize P (ci|x). Thus, in
classification learning, concept drift can be considered as a
change in P (ci|x). In [14], such a change is referred to as real
drift, while a change in p(x|ci) (i.e., the distribution change
in the input) is referred to as virtual drift.

Most of the concept drift detection methods detect drifts
by measuring the changes in the whole instance space. That
is, when measuring the change in P (ci|x), x ranges over the
entire feature space ℜm, wherem is the dimensionality of the
feature space. We refer to such a drift detection method as
a global drift detection method. It is common, however, that
a change in P (ci|x) occurs only in a subspace of ℜm. Figure
1(a) illustrates an initial class boundary in a 2-dimensional
feature space. After a period of time, the concept undergoes
a drift and its class boundary rotates clock-wise to the po-
sition of the solid line in Figure 1(b). Only in the shaded
regions P (ci|x) has changed; in the other regions the class
labels have not changed. We refer to such changes in local
regions of the instance space as partial concept drifts.

3.2 Partial Drift Detection Method
A limitation of global drift detection is that if the data

undergo a partial drift in a small region, a global method
may not be sensitive enough to detect it. Also, a global
method may not be able to identify the regions where the
change takes place and thus unable to update the model
accordingly.

To detect partial drifts, we need to look into local regions
of the instance space. One way to do so is to partition the
instance space into subspaces and apply an existing global
method to each of the subspaces. Such a strategy requires
prior knowledge of how the instance space should be parti-
tioned. A coarse partition may not offer much of the benefits
of partial detection, while a fine partition may be too sen-
sitive to noise and data variation. To overcome these prob-
lems, we propose a partial drift detection method based on
a rule induction framework which we describe below.

1. Apply a rule induction method to the current available
data (e.g., the first chunk of data) to learn a set of
classification rules.
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(c) Changes in rule accuracy after
drift.

Figure 1: Formation of partial drift and its effect on rules.

2. When a new data chunk is available, detect partial
drifts as follows:

(a) For each rule whose coverage is over a user-specified
threshold, apply a drift detection measure (de-
scribed later in Section 3.3) to detect changes in
the local instance space covered by the rule.

(b) If no rule has coverage over the user-specified thresh-
old, apply the same measure to each rule whose
coverage is over the 90th percentile of the rule
coverage in the model to detect drifts in the local
region covered by the rule.

In this procedure, only rules with good coverage are used
to identify regions for local drift detection. The reason for
such a choice is that changes in a small region may well be
due to noise or data variation and thus are not reliable indi-
cators of concept drifts. In addition, rules with good cover-
age usually describe the concept in the data better than the
rules that cover few examples. A significant change of class
distribution in the region covered by such a rule is a better
indicator that the concept is changing. The coverage thresh-
old can be user-specified (such as 10%), or a high percentile
of the rule coverage values. We use a user-specified thresh-
old first. If none of the rules has coverage over the threshold
(meaning all the rules have small coverage), we choose all
the rules whose coverage is over the 90th percentile. The
reason for this second threshold is to choose rules with rela-
tively high coverage from low-coverage rules; otherwise, no
rules can be used for drift detection. The choice of the 90th
percentile is based on our experimental results.

Figure 1(c) illustrates how a rule can be used to detect
partial drifts. A rectangle represents the region covered by
a rule learned before the drift occurred. It is obvious that
the class distribution in the top rectangle has changed sig-
nificantly after the drift and focusing on such a region can
effectively detect such a partial drift, while with a global
method the change may not be considered significant. The
use of rules in our method allows for fine-level detection
of partial concept changes in the underlying data distribu-
tion. It may be incorrectly concluded that this drift de-
tection method is limited only to partial drifts. Quite the
contrary is true, however. A global drift can be essentially
thought as the accumulated effect of a large number of par-
tial drifts. A partial drift affects small regions of the data
and consequently only a few rules detect a drift; a global
drift affects a large segment of data and consequently many

more, possibly all, rules detect a drift. In section 7, we will
show that this framework is capable of detecting both types
of drift. More importantly, it is able to determine regions
that undergo a drift.

3.3 Measures for Partial Drift Detection
To detect a drift in the region covered by a rule, a metric

is needed to measure the distribution change of the target
variable between the old and new data. In this section, we
introduce several measures that can be used for this purpose.
The target variable in this context is the class variable c.
The goal is to measure the distribution change of c in the
region covered by rule R, i.e., P (c|R).

3.3.1 χ2 test
Pearson’s chi-square test is a non-parametric statistical

test used to determine if there is a significant difference be-
tween the expected frequencies and observed frequencies in
one or more categories. We can use it to determine whether
the class distribution of instances covered by a rule in the
new data is significantly different from the one in the old
data. The categories in the χ2 test are described in the
contingency table in Table 1, where c represents the class
a rule R predicts, c̄ represents the classes other than c, old
represents the old data and new denotes the new data.

Table 1: The contingency table for χ2 test.
c c̄

old O1,1 O1,2

new O2,1 O2,2

The numbers in the cells represent the observed frequen-
cies of the instances in each category. For example, O1,1

is the number of positive instances covered by R in the old
data. The expected frequency of each cell is estimated as:

Ei,j =

∑
2

i=1
Oi,j ×

∑
2

j=1
Oi,j

∑
2

i=1

∑
2

j=1
Oi,j

(1)

The χ2 statistic is calculated as:

χ
2 =

2∑

i=1

2∑

j=1

(Oi,j − Ei,j)
2

Ei,j

(2)

If the χ2 value exceeds a critical value for one degree of
freedom, the null hypothesis that the class distribution of
instances covered by rule R in the new data is the same as
the one in the old data can be rejected at the corresponding
level of confidence. In our method, we use the confidence
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level of 95%. Thus, if the χ2 value exceeds 3.84, we conclude
that the region covered by R has undergone a drift, detecting
a partial drift affecting only a part of the data.

3.3.2 Entropy-based measure
Entropy can be used to measure the impurity of a data

set with respect to the class membership. The entropy of
the data set covered by a rule R can be calculated as:

H(R) = −
k∑

i=1

P (ci|R)logP (ci|R) (3)

where ci is the ith class label from a total of k class labels.
A change in entropy from old instances to the new ones sug-
gests a change in the class distribution of instances covered
by R. If such a change is significant, it can be said that the
region covered by the rule has undergone a concept drift.

To determine whether the change is significant, we can
use the bootstrap method to estimate the confidence interval
of the entropy change between the old and new data. The
bootstrapping procedure works by constructing m samples
So1 . . . Som from the old data using random sampling with
replacement. The size of each sample is equal to that of
the original data. Similarly, m samples of the new data
Sn1 . . . Snm can be constructed. For each sample, entropy
is calculated using Equation 3. For each pair of samples
Soi and Sni

, the difference between their entropies is calcu-
lated. If the entropy difference from the original old and new
data is over the 95 percentile of the m entropy differences
obtained from the samples, a concept drift is detected. In
other words, the upper bound of the conference interval for
the 95% confidence level is used as the change threshold for
drift detection. The advantage of this bootstrap method is
that the threshold is automatically determined. The disad-
vantage is that bootstrapping can be time-consuming when
m is large and the rule covers a large number of examples.
If time is a concern, a user-specified threshold can be used
to replace the bootstrap method.

Note that the entropy measure may not be able to detect
a concept drift in some cases. For example, assuming there
are two classes in the data, if all the instances covered by
the rule in the old data belong to class c1 but all the covered
instances in the new data belong to class c2, then the entropy
values in both old and new data are 0. Thus, although a drift
has clearly occurred, there is no change in entropy, which
means no drift is detected.

3.3.3 Rule accuracy
Classification accuracy of the learned model has been used

to detect concept drifts in many global detection methods.
Similarly, for partial drift detection, we can use rule accuracy
to monitor the predictive performance of a rule. If the rule
accuracy drops significantly on new data, a drift is detected
in the region covered by the rule. The accuracy of a rule is
the number of positive instances covered by the rule over the
total number of instances covered by the rule. Similar to the
entropy-based method, the bootstrap method can be used to
determine a threshold for the significant drop. Alternatively,
a user-supplied threshold can be used.

3.3.4 Rule quality based measures
Rule quality refers to the goodness and reliability of a rule.

Many rule quality measures have been proposed to evaluate

rules for classification and postpruning tasks [4]. Here we use
rule qualities to also detect partial drifts. A rule with good
quality provides good generalization of the data it covers.
If the quality of a rule generated from previous data drops
significantly when evaluated on the new data, it is a good
indication that the class distribution of data in the region
the rule covers has changed. In other words, a partial drift
may have occurred in the region. Rule accuracy can serve as
a rule quality measure. Below we introduce three additional
measures.

• Rule AUC. The area under the ROC curve (AUC) of
a rule is computed as the area of the polygon defined
with the four points (0, 0), (x, y), (1, 1) and (1, 0) in the
ROC space, where x is the false positive rate and y is
the true positive rate when using the rule to classify
the examples it covers.

• Logit of Rule Accuracy. It is calculated as

log
P (c|R)

1− P (c|R)
. (4)

• Rule Discrimination. It measures the extent to which
a rule can discriminate between positive and negative
examples [3]. It favors both high accuracy and high
coverage:

log
P (R|c)(1− P (R|¬c))

P (R|¬c)(1− P (R|c))
. (5)

Similar to the rule accuracy based method, when using a
rule quality based method to detect drifts, a drop threshold
is needed to determine whether the drop is significant. The
threshold can be either user-defined or to be determined by
a bootstrap method.

4. INSTANCE FORGETTING
The sliding window technique is a straightforward ap-

proach to providing classification algorithms with the most
recent of instances. Inclusion of past relevant instances into
a new chunk of data in case of partial drift, however, can re-
duce the variance of the underlying data distribution which
allows the classification algorithm to learn a more stable
and accurate model. To achieve this goal, we use the rule
qualities, this time to judge the relevance of old instances.

Let R be a rule in the current model. When the next data
chunk D becomes available, if a drift is detected in the re-
gion covered by R, we check whether the quality of R signif-
icantly drops on the new data using one of the rule qualities
described in Section 3.3. If so, it is clear that a good portion
of the positive instances covered by R in the old data are
inconsistent with new data, and thus can be considered irrel-
evant to the new concept. In this case, not only we remove
R from the classification model, but we also remove the pos-
itive instances that R covers. On the other hand, rules that
are not affected by the drift or rules whose qualities do not
drop are consistent with the new data and positively con-
tribute to the classification model. The instances covered
by these rules are retained. The goal is to always keep a set
of old instances that are considered relevant to the current
concept and remove inconsistent examples.

We apply this strategy to the entire stream by consis-
tently keeping an active set of relevant instances in memory.
When a new chunk of data becomes available and a drift is
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detected, the classification algorithm does not learn a model
only from the newly arrived data. Instead, the new chunk
is merged with the previously maintained instances that are
considered relevant to it. A new model is learned from this
larger data set which has less variance in data distribution,
yielding a more accurate model. The merged data set serves
as the set of relevant instances for the current concept.

A drawback of this merging, in certain scenarios, is the ac-
cumulation of a large number of relevant instances in mem-
ory. The possibly growing number of relevant instances can
significantly affect the running time of the classification al-
gorithm which is a major issue in stream environment. To
deal with this issue, we use AVSpace [13] to compress the
data by caching the sufficient statistics of relevant examples.
AVSpace is a tree-based data structure that was originally
designed to accelerate sequential covering algorithms for rule
induction. It essentially limits the memory consumption of
instances by storing the counts of instances satisfying var-
ious conditions used in rule induction. The upper-bound
for memory consumption of AVSpace is O(dM ) where d is
the number of attributes and M is the number of values of
each (discretized) attribute. It is important to note that
the memory consumption is independent of the number of
instances (N) available in the data stream and can thus be
considered constant.

Description of the construction and structure of AVSpace
is out of the scope of this paper, and instead must be referred
to [13]. We suffice it to say that AVSpace is used here only
for efficient maintenance of relevant instances in memory.
To that end, a few changes has been made to the AVSpace
structure to make it suitable for data streams. In particu-
lar, AVSpace was modified to dynamically add instances as
they arrive from the data stream, and remove instances as
dictated by the rules affected by a drift.

5. MODEL BUILDING AND UPDATING
Our approach is a general framework for rule learners, and

any rule learning algorithm can be utilized for this approach.
The learning, pruning and classification routines of a rule
learner does not need to be changed but the rule learner
needs to be augmented to support rule quality, which is a
trivial task.

In our framework, we first learn a set of rules from the first
chunk of data, and calculate rule qualities on that chunk us-
ing one of the rule quality measures described in section
3.3.4. When a new chunk of data is available, the drift de-
tection method described in section 3.2 is used on rules with
relatively high coverage. If a drift is detected on the region
covered by a rule, we compute the qualities of this rule and
the rules that were not used in drift detection (i.e., the rules
with low coverage) on the new data. If the quality of a rule
drops on the new data, which suggests the negative impact
of the drift on the rule performance, the rule is removed
from the model. Unaffected rules remain part of the classi-
fication model. Finally, if a drift is detected, a new model is
learned from the new and past relevant data and added to
the current classification model.

The strategy of keeping previously-learned consistent rules
ensures that some of the past history is emphasized within
the new model. If future concepts overlap with the cur-
rent concept, which is the case in partial drifts, inclusion
of these rules can improve the classification accuracy of the
new model.

Algorithm 1 Stream Rule Learning Framework (SRLF)

Input:

A data chunk D

AVSpace (maintaining relevant instances) Λ
Rule-based classifier C

Drift detection method M
Rule coverage threshold θ

Output:
Updated classifier C

Updated AVSpace Λ

1: if C == NULL then

2: insert instances of D into Λ
3: C ← classifier learned from Λ
4: else
5: for each rule R in C do

6: if coverage(R) > θ then

7: detect drift over the region covered by R using M
8: end if

9: end for

10: if no rule has coverage > θ then

11: for each rule R in C do
12: if coverage(R) > the 90th percentile then

13: detect drift over the region covered by R using M

14: end if
15: end for

16: end if

17: if drift is detected then

18: for each rule R in C do
19: if drift is detected over R or coverage(R) is below the

threshold then

20: Qold ← rule quality from Λ
21: Qnew ← rule quality from D
22: if Qold > Qnew then

23: remove R from C

24: if drift is detected over R then
25: remove positive instances covered by R from

Λ
26: end if

27: end if
28: end if

29: end for

30: end if
31: Insert instances of D into Λ
32: if drift was detected then

33: C ← C ∪ classifier learned from Λ
34: end if
35: end if

36: return C and Λ

6. A RULE LEARNING FRAMEWORK
In this section, we combine the concepts introduced in

Sections 3, 4 and 5 to provide a general rule learning frame-
work for learning classification rules from data streams. We
refer to this framework as Stream Rule Learning Framework
(SRLF) and outline it in Algorithm 1.

The stream is processed in sequential, non-overlapping
chunks. When the first chunk of data arrives, an instance
of AVSpace is created and is populated with the instances
in the chunk, and classification model is learned from the
AVSpace (code lines 1 to 3 ). When the next chunk of data
becomes available, each rule whose coverage is more than the
coverage threshold utilizes a partial drift detection method
such as the χ2 test to detect drifts over the region covered by
the rule (code lines 5 to 9 ). If no rule has such coverage, then
all rules whose coverage are more than the 90th percentile
in the current rule model are used to detect a partial drift
(code lines 10 to 16 ). If a drift is detected, then the quality
of each rule in the current model that detects a drift or has
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low coverage is evaluated on the new data chunk (code lines

19 to 21 ). If the quality of such a rule has dropped, then
the rule is removed from the classifier and further if a drift is
detected over the rule, the positive instances the rule covers
are removed from the AVSpace (code lines 22 to 27 ). The
remaining instances in AVSpace, all deemed relevant to the
new chunk, are merged with the new chunk (code line 31 ).
If a drift was earlier detected, the classification algorithm is
called to learn a new set of rules, which is then combined
with previous high quality rules (code line 33 ). The rules
are combined as the union of two sets with duplicate rules
removed.

The advantage of our approach is that it does not forget
instances based on their time stamps. Instead, it uses the
rules and their qualities to objectively measure the relevancy
of the old instances, and only forgets instances that are con-
sidered irrelevant. Inclusion of relevant instances with the
newly available data provides a more consistent data set for
the rule learner and results in a more stable and accurate
classification model. Another advantage of this approach is
that it allows for detection of partial drifts. A partial drift
affects a few of the rules, and may not have a noticeable
effect on the overall classification accuracy. However, by
monitoring the drift at rule level, partial drifts can be easily
detected. Furthermore, by focusing on rules, it is trivial to
determine exactly which parts of the model, that is which
rules, are inconsistent with the new data.

Assume that each data chunk has N instances and each
instance has d attributes, taking M different values. There
is a one time cost of O(dM ) to construct the AVSpace. Drift
detection on each new chunk takes O(rdN) were r is the
number of rules in the model. Removal of rules can be done
in constant time, and inserting new instances into AVSpace
takes O(dN). Assume learning a classifier from AVSpace Λ
takes O(f(Λ)). The overall running time on each chunk of
data is O(rdN + f(Λ)). Since learning algorithms have non-
linear running times, and r, d << N , SRLF can efficiently
process the stream.

7. EXPERIMENTS
In this section, we evaluate the performance of the SRLF

framework using a variety of synthetic and real life data
sets. We want to see which of the drift detection measures
described in section 3.3 is suitable for partial drift detec-
tion. We also want to see which rule quality formulas are
good for model updating and instance forgetting. Further-
more, we compare our SRLF framework to existing stream
classification algorithms, and also compare partial drift de-
tection to global detection methods. Finally, we discuss the
effect of parameters in our framework on the performance.

7.1 Performance Measures
We evaluate these approaches using both classification ac-

curacy and drift detection sensitivity measures. Classifica-
tion accuracy of a model is computed on test data that are
not present during learning. Since drifts can be controlled
on the synthetic data sets, it is possible to determine the
sensitivity of a drift detection method, that is, if a method
has correctly detected a drift, or if it has falsely reacted to
the incoming stream. A model update corresponding to an
actual drift counts towards the true positive rate (TPR) of
the detection method and any other update counts towards
the false positive rate (FPR). We also estimate how quickly

an algorithm responds to a drift by calculating its detection
lag. The lag of a detection is the distance (in terms of the
number of data chunks) between the time a concept drift
occurs and the time an algorithm detects that drift. The
lag of an algorithm on a test data set is the average lag of
correct detections the algorithm has on the data set. If an
algorithm does not detect any true drift on a data set, we
assign its lag to ∞.

7.2 Experiment Setup
We use the ELEM2 rule induction algorithm [3] as the

base learner for all the methods. It is worth emphasizing
that although we use ELEM2 in our experiments, any rule
learner can be used by our framework. All experiments were
run on a Linux machine equipped with Intel Duo 2.0GHz
processor and 512MB of RAM. On the synthetic data sets,
all experiments were run 20 times and the results were av-
eraged. Each synthetic data set contains a total of 60000
instances. Unless otherwise stated, the stream was pro-
cessed in sequential chunks of 1000 instances, with a cov-
erage threshold of 10%. We later examine the effect of these
parameters on model performance. 10% noise is introduced
to all synthetic data sets by randomly changing the actual
class labels. The significance level in all statistical tests is set
to 5%. Based on the suggestions in [5] and other empirical
studies, the number of bootstraps was set to 500. Finally,
to obtain the best results, in accordance with [12, 9], the
number of classifiers in the Ensemble approach [12] was set
to 25.

7.3 Data Sets
STAGGER [14] is used to simulate concept shifts, total

changes in concept descriptions. It is defined using three at-
tributes size ∈ {small,medium, large}, color ∈ {red, green,
blue}, and shape ∈ {square, circular, triangular}. Three
blocks of data are defined as follows. In the first block,
an instance is labelled 1 if size = small ∧ color = red.
In the second block, an instance is labelled 1 if color =
green ∨ shape = circular, and in the third block if size =
medium ∨ large.

SEA [9] simulates partial overlapping drifts through four
blocks of equal size, and is generated using three attributes
a1, a2 and a3 taking values between 0 and 10. An instance
is labelled 1 if a1 + a2 ≤ θ, where θ is a user parameter.
a3 is not effective in determining the class label in this data
set. By varying the value of θ for each of the four blocks,
we obtain a different concept. An instance of this data set
with θ values 8, 9, 7, and 10 is created.

CIRCLES [8] simulates partial, gradual drifts where an
instance is labelled positive if it is inside a circle. Con-
cept drift is simulated by changing the centre of the circle
(0.2 0.5) → (0.4 0.5) → (0.6 0.5) → (0.8 0.5), and increasing
its radius 0.15 → 0.2 → 0.25 → 0.3.

HYPERPLANE [12, 7] also simulates partial, gradual
drifts by labelling instances with respect to a moving hyper-
plane. A d-dimensional hyperplane is defined as

∑d

i=1
aixi =

b. Only instances above the hyperplane, that is instances
satisfying

∑d

i=1
aixi ≥ b are labelled positive. Initially weights

ai are chosen randomly from [0 1] space, and b is calcu-

lated as b = 1

2

∑d

i=1
ai so that the hyperplane divides the

instance space into two sets of equal volume and equal num-
ber of positive and negative instances is generated. Instances
are randomly drawn from a uniform distribution on [0, 1]d.
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Table 2: Sensitivity of drift detection methods with 10% change threhold.
STAGGER SEA CIRCLES

TPR 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0

FPR 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.9 1.0 1.0 0.85 0.7 0.5 0.9 1.0 1.0 0.85

LAG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ2 Ent. Discr. Acc. AUC Logit χ2 Ent. Discr. Acc. AUC Logit χ2 Ent. Discr. Acc. AUC Logit

Table 3: Sensitivity of the bootstrapping variants of detection methods.
STAGGER SEA CIRCLES

TPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FPR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LAG ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Ent. Discr. Acc. AUC Logit Ent. Discr. Acc. AUC Logit Ent. Discr. Acc. AUC Logit
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(a) Accuracy on STAGGER.
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(b) Accuracy on SEA.
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(c) Accuracy on CIRCLES.
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(d) Accuracy on HYPERPLANE.
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(e) Accuracy on Network Intrusion.
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(f) Accuracy on Electricity.

Figure 2: Comparisons of SRLF detection methods.

Concept drifts are simulated by controlling the magnitude
of change m across the dimensions that are involved in the
drift for every N instances. Aside from the magnitude of
change, it is also possible to control the direction of change
si ∈ {−1, 1}. If there are k dimensions involved in the drift,
then all weights ai, 1 ≤ i ≤ k are adjusted by si×m

N
after

the generation of each new instance. There is a 10% chance
that the direction of change is reversed after N instances
are generated, where si is replaced by −si. Once the new
weights are assigned, b is re-calculated to ensure the number
of positive and negative instances is equal. HYPERPLANE
allows for control of the magnitude and dimensionality of
the drift.

Network Intrusion [2, 15] is a real life data set exhibit-
ing concept drift. The data set consists of separate training
and testing files and each instance is labelled as either a
normal connection or as one of the many attack types. The
data consists of a total of 42 numeric and symbolic attributes
per instance, and is gathered from a military network used
to simulate network intrusions. The frequency of different
types of attacks varies over time, and the data set simulates

distribution changes in instance frequency. A sample of the
data with 250000 instances were used.

Electricity Market Dataset [6] is another real life data
set, collected from the Australian NSW electricity market.
The price in this market is partially dependent on the de-
mand and supply of electricity. The goal is to determine the
relative change, that is an increase or a decrease, in pricing
with respect to the average prices in the past 24 hours. The
data set contains over 40000 instances and contains 6 fields
explaining the electricity demand, the electricity transfer be-
tween states, etc. A detailed description is available in [6].

7.4 Comparison of Drift Detection Methods
Our SRLF framework provides the flexibility of choosing

from different drift detection mechanisms such as χ2 test or
entropy-based method. Figure 2 compares these drift de-
tection methods in terms of classification accuracy on syn-
thetic and real data sets. As described in section 3.3, except
for the χ2 method, all the other methods have two ways
to determine the change threshold: user-supplied or boot-
strapped. Figure 2 shows the performance of both threshold
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setting methods. Table 2 shows the sensitivity of the detec-
tion methods in terms of TPR, FPR and lag and Table 3
show the results when the bootstrap method is used.

As can be seen in Figure 2, the χ2 based method consis-
tently offers the best classification performance on all the
data sets. All the other methods have similar performance
except on STAGGER where the entropy-based method is
much worse than others. The figure also shows that using
the bootstrap method to determine the change threshold is
not successful. Its classification performance is worse than
simply using the 10% threshold on all the data sets and
with all measures with only a few exceptions. The reason
for such a poor performance by the bootstrap method can be
explained by the sensitivity results in Table 3, which shows
that the detection methods with bootstrapped thresholds
are highly insensitive and do not detect any drifts on these
data sets.

On the other hand, as Table 2 shows, with the exception
of the entropy based method, all detection methods with the
10% change threshold correctly detect all the drifts (TPR =
1) as soon as they occur (LAG = 0). However, some meth-
ods are too sensitive that they often consider the incoming
stream as drifting even when no real drift is occurring. In
particular, on SEA and CIRCLES, the accuracy and AUC
based approaches are so sensitive that they consider every
chunk of the stream to be drifting (FPR = 1). The χ2 ap-
proach performs better in this regard, and have relatively
lower FPR without sacrificing TPR.

Two conclusions can be drawn from the above results.
First, despite the soundness of the bootstrap method, it does
not result in good performance. Second, amongst the detec-
tion methods, the χ2 based approach offers not only the best
classification accuracy, but also better sensitivity in terms of
TPR, FPR and lag.

The entropy and rule quality based methods require a
user defined threshold that determines the extent of change
in entropy or drop in rule quality that is to be tolerated for
drift detection. To see how the values of this threshold af-
fects the results, Table 4 show the classification accuracy of a
rule quality based detection method with different threshold
values. In this experiment, rule quality measure is rule dis-

crimination. Table 4 shows the best result on each data set
in bold. The best result for each data set is obtained from
a different threshold value, demonstrating the best thresh-
old depends on the data set. However, the differences in
accuracy are not significant among the threshold values.

One interesting observation is that on the CIRCLES data
set, a very high threshold offers better results. The charac-
teristic of the data set is such that a large number of rules
with very low coverage are formed. Due to low coverage,
rules are generally very sensitive, and can be easily marked
for deletion from the model, resulting in instability and low
classification accuracy. Using a very high drop threshold
allows for maintenance of a larger number of rules in the
model, and improves the classification performance.

7.5 Comparison of Rule Qualities for Model
Updating and Instance Forgetting

Upon detecting a drift, SRLF uses rule qualities to de-
termine which rules should be removed from the model and
which instances should be removed from the old data. It
is thus important to observe the effect of the choice of rule
quality on performance. Since the result of section 7.4 sug-
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Figure 3: Comparison of rule qualities in model updat-

ing.

gests the χ2 test as the best detection measure, we examine
the behaviour of rule qualities in model updating and in-
stance forgetting with the χ2 test for drift detection. Figure
3 shows the result. In general, the choice of rule quality
does not significantly affect the classification accuracy. This
is because, if the value of one measure drops, it is very likely
that the values of other measures drop too, though the ex-
tent of the drop varies slightly from one quality measure to
another, resulting in small difference in performance. Con-
sequently, any of these measures of rule quality can be used
for model updating and instance forgetting without signifi-
cant impact on the model performance. In general, however,
rule discrimination that takes both accuracy and coverage
into account performs best in most of the datasets.

7.6 Comparison to Other Approaches
We now compare our approach against the well known

Ensemble approach [12] and STEPD [8]. A brief description
of the Ensemble approach is provided in Section 2. STEPD
is a measure of detecting drifts based on the principle that
if a drift is not occurring, then the accuracy on the most re-
cent instances and the overall classification accuracy are not
significantly different. A particular statistical test of equal
proportions (STEPD) is utilized to determine if significant
difference between the accuracies is observed. It is trivial to
incorporate such a statistic into SRLF and use it on each
rule to determine the occurrence of partial drifts.

Figure 4 shows the performance of SRLF with the χ2 test
for drift detection and rule discrimination for model updat-
ing and instance forgetting, against that of the STEPD and
Ensemble approaches on all data sets, synthetic and real.
STEPD on some data sets performs better than the En-
semble and on some performs worse. However, SRLF con-
sistently outperforms both measures over all the data sets.
This is most apparent from the CIRCLES data set where
the concept changes very slowly, showing partial and grad-
ual drifts. Based on the results on all the data sets, it can
be concluded that SRLF is capable of producing high per-
formance classification models in case of either global and
sudden drift (as in STAGGER) or partial and gradual drift
(as in SEA, CIRCLES and HYPERPLANE). Figure 4(c) is
the average running time of the three models on each data
set. Both STEPD and SRLF are more efficient than the
Ensemble approach. SRLF is slightly slower than STEPD,
but offers a significantly better classification result.

SRLF also offers better sensitivity compared to STEPD
and Ensemble as shown in Table 5. All the three approaches
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Table 4: The effect of the drop threshold on classification accuracy of rule quality based detection method.
5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

STAGGER 0.802 0.799 0.809 0.805 0.815 0.808 0.808 0.810 0.792 0.785
SEA 0.711 0.718 0.724 0.707 0.753 0.730 0.738 0.724 0.718 0.703

CIRCLES 0.568 0.550 0.562 0.562 0.563 0.556 0.573 0.584 0.605 0.608

HYPERPLANE 0.808 0.801 0.808 0.809 0.791 0.791 0.782 0.797 0.773 0.761

Table 5: Sensitivity of SRLF based, Ensemble, and STEPD.
STAGGER SEA CIRCLES

TPR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

FPR 0.5 1.0 0.5 0.5 1.0 1.0 0.7 1.0 1.0

LAG 0 0 0 0 0 0 0 0 0

SRLF Ensemble STEPD SRLF Ensemble STEPD SRLF Ensemble STEPD

have the perfect TPR and lag on the tested data sets. But
in terms of FPR, STEPD behaves similar to the rule quality
based drift detection methods and is over sensitive. The
Ensemble is the most sensitive method with FPR=1 on all
the data sets because it learns a classifier on each new chunk
of data. SRLF offers the lowest FPR. It is likely however to
overreact to the incoming stream. Nonetheless, it performs
better than STEPD and Ensemble in terms of FPR.

7.7 Comparison of Global and Partial Detec-
tion Methods

In this section we compare the sensitivity of global and
partial methods of detecting drifts to determine if focusing
on partial drifts is more beneficial than global drift detec-
tion. We use our SRLF framework with the χ2 test, entropy,
and rule accuracy measures for detecting partial drifts, and
compare them to approaches that use the same measures for
global drift detection. To this end, we introduce two global
drift detection methods that use accuracy and the χ2 test.
The global accuracy method monitors the model classifica-
tion accuracy from one chunk of data to the next and learns
a new classification model from the most recent instances
whenever the drop in classification accuracy is below a user
defined threshold. The global χ2 method is essentially the
same, but instead of model accuracy, it monitors the change
in the class distribution of entire instance space from one
window to the next using the χ2 test. A statistically sig-
nificant drop suggests occurrence of a drift and the need
for updating the current model. An entropy based global
detection method is introduced in [11]. We further com-
pare these approaches against the KL-divergence [5] global
detection method. Brief descriptions of the global entropy
and KL-divergence methods are provided in Section 2. Both
approaches were designed only for detection of drifts and do
not involve learning and maintaining a classification model.
The result is provided in Table 6, where G in front of a
method name denotes the global variant.

As shown in the table, the global entropy-based and KL-
based methods are highly insensitive and do not detect any
drift on these datasets (with TPR=FPR=0)1. On the other
hand, the local entropy-based method has higher TPR and
FPR than its global variant on all the datasets. Looking
at the results for χ2 and accuracy based methods, the local
methods does not miss any drift (TPR=1). But the global
ones miss most of the drifts on CIRCLES and the accuracy-
based method misses some drifts on SEA as well. On the
other hand, the global accuracy-based method has lower
FPR than its local variant. The global χ2 based method

1These results do not suggest the ineffectiveness of these
approaches in other scenarios.

has lower FPR on STAGGER and SEA but higher FPR
on CIRCLES than its local variant. Since CIRCLES ex-
hibits gradual and partial drifts, we can say that the local
χ2 method is more successful on datasets with gradual and
partial drifts than it is on datasets with global and sudden
drifts. Among the three local methods evaluated here, the
χ2 based method clearly outperforms others.

7.8 Analysis of Parameters
Figure 5 examines the effect of a few parameters on per-

formance. The HYPERPLANE data are used in the exper-
iments shown in this figure. Figure 5(a) shows the effect
of the dimensionality of the drift. As the percentage of the
attributes involved in the drift increases, the classification
becomes a harder problem, and accuracy suffers. Figure
5(b) shows the magnitude of the drift which also negatively
influences the model performance. Figure 5(c) shows the
expected improvement of model performance with increas-
ing number of instances per chunk. Finally, Table 7 shows
the changes in accuracy with respect to changes in the rule
coverage. For STAGGER, increasing the coverage require-
ment can be beneficial since rules learned from STAGGER
generally have good coverage. On the other data sets, rules
often do not have high coverage. As a result, increasing the
coverage does not affect the performance at all since none of
the rules pass the coverage threshold.

8. CONCLUSION
We have proposed a novel approach to detecting concept

drifts using the χ2 test alongside rule quality measures to
responsively update the model to reflect the most current
trends. The focus of this detection mechanism was on sensi-
tivity to partial drifts since they are the most common form
of drifts. We also proposed an instance forgetting strategy
that facilitates maintenance of instances that are considered
recent and also relevant to the current concept in order to
reduce the variance of data distribution which allows for
construction of more stable and accurate models. We com-
pared our approach to a variety of established approaches
from the literature on both synthetic and real data sets. We
showed that our approach achieves better classification ac-
curacy without sacrificing efficiency. We also examined the
sensitivity of each model through computation of TPR, FPR
and lag and showed that our approach can detect both local
and global drifts effectively and is particularly successful in
detecting gradual, partial drifts.

9. ACKNOWLEDGEMENTS
We would like to thank Prof. Ke Yi for kindly providing

the code for the KL-divergence based drift detection method.

777



Table 6: Sensitivity of partial and global detection methods.
STAGGER SEA CIRCLES

TPR 1.0 1.0 1.0 1.0 0.5 0 0 1.0 1.0 1.0 0.7 0.5 0 0 1.0 0.2 1.0 0.2 0.5 0 0

FPR 0.5 0.2 0.5 0.5 0.5 0 0 0.5 0.25 1.0 0.5 0.5 0 0 0.7 0.8 1.0 0.8 0.5 0 0

LAG 0 0 0 0 0 ∞ ∞ 0 0 0 0.25 0 ∞ ∞ 0 1 0 0 0 ∞ ∞

χ2 G.χ2 Ac. G.Ac. Ent. G.Ent. KL χ2 G.χ2 Ac. G.Ac. Ent. G.Ent. KL χ2 G.χ2 Ac. G.Ac. Ent. G.Ent. KL

Table 7: The effect of rule coverage on classification accuracy of SRLF.
1% 5% 10% 15% 20% 25%

STAGGER 0.844 0.857 0.857 0.865 0.865 0.865

SEA 0.802 0.815 0.815 0.815 0.815 0.815

CIRCLES 0.581 0.632 0.632 0.632 0.632 0.632

HYPERPLANE 0.833 0.884 0.884 0.884 0.884 0.884
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(b) Accuracy on real data sets.
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Figure 4: Comparison of performance of the χ2 based, Ensemble, and STEPD and approaches.
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Figure 5: The effect of parameters on performance.
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