
Proceedings of the 27th International Conference on Computational Linguistics, pages 950–961
Santa Fe, New Mexico, USA, August 20-26, 2018.

950

Learning Emotion-enriched Word Representations

Ameeta Agrawal, Aijun An and Manos Papagelis
Department of Electrical Engineering and Computer Science

York University, Toronto, Canada
{ameeta,aan,papaggel}@eecs.yorku.ca

Abstract

Most word representation learning methods are based on the distributional hypothesis in linguis-
tics, according to which words that are used and occur in the same contexts tend to possess similar
meanings. As a consequence, emotionally dissimilar words, such as “happy” and “sad” occurring
in similar contexts would purport more similar meaning than emotionally similar words, such as
“happy” and “joy”. This complication leads to rather undesirable outcome in predictive tasks that
relate to affect (emotional state), such as emotion classification and emotion similarity. In order
to address this limitation, we propose a novel method of obtaining emotion-enriched word rep-
resentations, which projects emotionally similar words into neighboring spaces and emotionally
dissimilar ones far apart. The proposed approach leverages distant supervision to automatically
obtain a large training dataset of text documents and two recurrent neural network architectures
for learning the emotion-enriched representations. Through extensive evaluation on two tasks,
including emotion classification and emotion similarity, we demonstrate that the proposed repre-
sentations outperform several competitive general-purpose and affective word representations.

1 Introduction

Emotion detection from text is the task of identifying emotions from natural language data such as re-
views, blogs, news articles, and so on (Alm et al., 2005; Aman and Szpakowicz, 2007). While numerous
taxonomies of emotions have been proposed (Ekman, 1992; Plutchik, 1980; Parrott, 2001), most psy-
chologists agree that an emotion is a feeling that characterizes the state of mind such as happiness, sad-
ness, anger, among others. The ability to detect emotions in text is critical for a number of applications
and services in diverse domains, including market research, customer relations, gaming, and intelligent
tutoring systems, to name a few (Mohammad and Turney, 2013).

Despite its potentially wide-spread use, the automatic detection of emotions remains a challenging
multi-class, sometimes multi-label, classification problem due to a number of reasons, including: (i)
different emotion models consist of different number and types of emotion categories; (ii) emotions are
not only subjective but also fuzzy, with more than one emotion occurring at the same time. As a result,
development of emotion related resources, such as training data, has been limited to a few manually
annotated datasets or lexicons, a process that requires much time and effort, and is expensive.

To solve the limited training data problem, the recent success of word embeddings has garnered in-
creased attention in the design of emotion classification systems (Bravo-Marquez et al., 2016; Pool and
Nissim, 2016; Mohammad and Bravo-Marquez, 2017). Word embeddings are distributed word represen-
tations (Collobert et al., 2011; Turian et al., 2010), where each word w in the vocabulary V is mapped
into a dense, low-dimensional, continuous-valued vector x ∈ Rd, d � |V|. The underlying idea is that
words that frequently occur together in same contexts get mapped to similar regions of the vector space.

Most embeddings (Mikolov et al., 2013b; Pennington et al., 2014) are typically modeled using the
syntactic context of words following the distributional hypothesis, i.e., words which occur in similar
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word pair GloVe CBOW

(happy, joy) ↑ 0.601 0.355
(happy, sad) ↓ 0.643 0.535

(cry, weep) ↑ 0.605 0.574
(cry, laugh) ↓ 0.657 0.403

Table 1: Cosine similarity between emotionally similar (↑) and emotionally dissimilar (↓) word pairs

contexts tend to be semantically similar. While the property of semantic similarity is beneficial in a
number of tasks, modeling emotionally dissimilar words with similar contexts into neighboring spaces
becomes counterproductive in affective tasks such as emotion classification. To further motivate this
limitation, Table 1 presents the cosine similarity between the word vectors of a few word pairs obtained
from popular pre-trained word embeddings such as GloVe (Pennington et al., 2014) and CBOW (Mikolov
et al., 2013b). According to the similarity scores, both GloVe and CBOW rate the word pair (happy, sad)
as more similar than (happy, joy).

The effectiveness of word embeddings has been shown to be task-dependent (Labutov and Lipson,
2013; Bansal et al., 2014) and while there is some work on generating task-specific embeddings (Kalch-
brenner et al., 2014; Tang et al., 2014; Chen and Manning, 2014; Qu et al., 2015), there is little work
specifically exploring the role of task-specific emotion-enriched embeddings.

In this paper, we propose learning emotion-enriched word representations1, which we call Emotion
Word Embeddings (EWE), in order to project emotionally similar words into neighboring spaces. To-
wards that end, first, a method of distant supervision is employed to automatically create a large training
dataset with a rich spectrum of emotions. Then, two recurrent neural network architectures are employed
to learn emotion-aware word representations by leveraging noisy, but large training data. Specifically,
we use Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) to capture
the semantic information between the words of the text document as well as the emotion information
provided in the form of the target label obtained through distant supervision. Experimental evaluation
demonstrates the effectiveness of learned emotion embeddings in the two tasks of emotion classification
and emotion similarity.

The major contributions of this work include: (i) a novel distant supervision method for automatically
labeling a large corpus of training data with fine-grained emotions; (ii) two LSTM model architectures for
learning emotion-enriched word embeddings from text documents (a single-label model and a multi-label
model); (iii) and, an extensive evaluation of the learned word vectors on two tasks: emotion classification
over four domains of text (blogs, fairy tales, personal experiences, and tweets) and emotion similarity.

The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3
describes the proposed model, followed by the experimental setup and results in Section 4. Section 5
presents the qualitative analysis and finally, Section 6 concludes the paper.

2 Related Work

There exists a large body of work discussing representation learning. Generic word vector models use
unannotated text to learn the embedding vector of each term as a fixed length continuous representation
by predicting adjacent terms in the document (Bengio et al., 2003; Collobert and Weston, 2008; Collobert
et al., 2011; Mikolov et al., 2013b; Mikolov et al., 2013a; Pennington et al., 2014). Incorporating
distributed word embeddings as features has proven effective in a variety of natural language processing
tasks, including parsing (Socher et al., 2013), language modeling (Bengio et al., 2003; Mnih and Hinton,
2008) and sentiment analysis (Socher et al., 2011; Labutov and Lipson, 2013; Tang et al., 2014; Tang
et al., 2016). However, the effectiveness of generic word embeddings has been shown to be heavily
task-dependent (Labutov and Lipson, 2013; Bansal et al., 2014).

1Available for download: https://www.dropbox.com/s/5egqnbktbfxp2im/ewe_uni.txt.zip?dl=0
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To increase the effectiveness of generic word embeddings, therefore, there have been some lines of
work in using neural networks for inducing task-specific affective embeddings. Socher et al. (2011)
learned vector space representations for multi-word phrases using recursive autoencoders for the task of
sentiment analysis. Labutov and Lipson (2013) produced task-specific embeddings from existing word
embeddings for sentiment analysis. Kalchbrenner et al. (2014) trained their models on a large dataset
of tweets, where a tweet was automatically labeled as positive or negative depending on the emoticon
that occurs in it. Tang et al. (2014; 2016) also induced embeddings from scratch for sentiment analysis
using a dataset of 10M tweets obtained through distant supervision labeled with positive and negative
emoticons. More recently, affective word representations have been obtained using a corpus of almost 1B
tweets weakly labeled with a set of 64 emojis (Felbo et al., 2017). An alternative to learning task-specific
embeddings from scratch or updating existing embeddings using neural networks is post-processing (or
fine-tuning) existing embeddings with respect to some external knowledge source such as a lexicon
(Faruqui et al., 2015).

All the above-mentioned approaches of learning task-specific affective embeddings (Tang et al., 2014;
Tang et al., 2016; Felbo et al., 2017) rely on tweets data obtained from Twitter, automatically labeled
using emoticons. However, tweets data do not generalize well to texts from other domains such as
blogs, narratives, etc. Instead, we explore a novel domain of text (product reviews) to present a more
generalizable approach to obtaining large-scale training data using distant supervision. In addition, while
previous embeddings were trained on corpora of sizes ranging from 10M to 1B tweets, our models are
able to learn rich representations from a much smaller dataset of about 200K reviews. Furthermore,
although a binary spectrum of positive and negative sentiment (Tang et al., 2014) or a large axis of 64
emojis (Felbo et al., 2017) has been previously used to generate representations, we align our embeddings
along an emotion model firmly grounded in psychology which remains unexplored yet. Lastly, while
the previous approaches used only a single-label setting (i.e., only one affect label per document), we
propose modeling a more natural multi-label setting where a document can be associated with more than
one emotion label.

3 Emotion-enriched Word Representations

In this section, we first describe two neural network models and their components for learning Emotion
Word Embeddings (EWE). Then, we describe the process of automatically obtaining a large training
dataset of text documents labeled with emotions through distant supervision.

3.1 Training Word Embeddings using LSTM

Let V =
{
w1, ..., w|V|

}
be the vocabulary of word tokens in the annotated dataset. Each word wi is

represented as a n-dimensional continuous vector xi ∈ Rn and the full embedding matrix isE ∈ Rn×|V|.
Starting from original embeddings xo

i of wordwi (initialized either randomly or through some pre-trained
word embeddings), the goal is to learn emotion-enriched embeddings xe

i for wi.
The LSTM (Long Short-Term Memory) model finds a dense low dimensional representation of words

by sequentially and recurrently processing each word in a document. Specifically, the inputs of the
LSTM are preprocessed text documents that consist of a sequence of words and their corresponding
target variable. Let D = {(d1, y1) , ..., (dD, yD)} denote an annotated dataset of documents, where
d = {w1, w2, ..., wN} denotes a text document consisting of a sequence of N words and yi is the
corresponding emotion label distribution for document di. The words of the text document are, first,
converted into vector representations, which are then sequentially fed into the LSTM model left-to-
right. Then, through back-propagation, the original word vectors get updated during training, producing
emotion-enriched embeddings xe

i for all wi ∈ V .
In this work, we consider two model architectures to capture the context information by modeling

the long-range dependencies between the words of a text document and emotion information provided
through the target label to map each word into an affective embedding space. Model 1 (EWEUNI) con-
siders a single emotion label for each document, whereas Model 2 (EWEMULTI) allows multiple labels
for a document. Figure 1 presents an overview of the proposed framework. First, we create a cor-



953

Weak Labeling Representation Learning
Document

Emotion Labeling 
using Distant 
Supervision

Document + 
Emotion Label

Emotion-enriched
Word Embeddings

Lexicon(s)

Text Document

LSTM

Activation

SOFTMAX (EWE-UNI)
or

SIGMOID (EWE-MULTI)

Figure 1: Overview of the framework for obtaining emotion-aware word representations

pus of emotion-labeled documents using emotion lexicons through a distant supervision process (to be
described in Section 3.2). Then this corpus is used as training data to learn emotion-enriched word rep-
resentations using LSTM. In other words, while document-level (entire examples) labeling is used to
create the training set, the embeddings get updated at individual word level.

3.1.1 Model 1: EWEUNI

Most words evoke only one emotion depending on the context. As an example, consider two benchmark
emotion datasets (Alm et al., 2005; Aman and Szpakowicz, 2007) where each sentence is annotated with
a single emotion label. Guided by this intuition, we propose EWEUNI which follows a multi-class setting,
where there exists only one valid mutually exclusive emotion label li for a text document di, and li ∈ L,
where L = {l1, ..., lk} denotes a discrete, finite set of k emotions.

Given an annotated document with its associated emotion label, the target value y is a one-hot vector,
where the values of all the indices but one are 0. For example, if d is labeled with emotion li, then it
holds that:

yj =

{
1,

0,

if yj = li

otherwise
(1)

The neural network consists of one hidden layer, with the embedding matrix E added to the input
layer. To predict the emotion label of the input text, an output layer with a softmax activation function
which gives a probability distribution over the k classes is added on top of the hidden layer for modeling
multi-class probabilities. The softmax function converts the classification result into label probabilities,
i.e. y′ ∈ [0, 1]k.

The final training objective is to minimize the multinomial cross-entropy loss of the predicted and true
distributions, where the error over a batch of n documents is calculated as:

ξ = − 1

n

n∑
i=1

k∑
j=1

yij log
(
y
′
ij

)
(2)

where i denotes the ith training sample, j denotes the jth class, y is the true distribution (one-hot
representation of the emotion label), and y′ is the predicted probability distribution, y′ij ∈ [0, 1] and∑

j y
′
ij = 1.

3.1.2 Model 2: EWEMULTI

Although modeling emotion classification as a multi-class problem captures the basic emotion connota-
tion of many words, in reality, most words can be associated with more than one emotion. For instance,
during the process of creating the NRC EmoLex emotion lexicon (Mohammad and Turney, 2013), it was
found that anger words tend to be associated with disgust, joy terms tend to be related with trust, and
surprise terms are largely also associated with joy.

In order to capture a word’s association with more than one emotion, the EWEMULTI models multi-
label classification setup where each document can belong to multiple emotion classes at the same time.
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Assuming k emotion classes, and more than one valid emotion label for each document, the target vari-
able y is binary represented. In other words, yj = 1 indicates presence of an emotion class, and yj = 0
otherwise. For example, if document d is labeled with a subset of emotion classes, si ⊆ L, then:

yj =

{
1,

0,

if yj ∈ si
otherwise

(3)

To predict the emotion label of the input text, an output layer with a sigmoid activation function, which
squashes the inputs into a probability range of [0, 1] for every class, is added to the last layer for modeling
the probability of each class independently from the other classes.

The loss objective in this case is binomial cross-entropy, computed as follows:

ξ = − 1

n

n∑
i=1

[
yi log

(
y′i
)
+ (1− yi) log

(
1− y′i

)]
(4)

where i denotes the ith training sample, y is the binary representation of true emotion label, and y′ is the
predicted probability.

3.1.3 Implementation
We use pre-trained word embeddings (GloVe |V| = 1.9M, d = 300 (Pennington et al., 2014)) to initialize
E and use random initialization sampled from a zero mean Gaussian distribution: x ∼ N

(
0, σ2

)
for

words not found in the pre-trained embeddings. Optimization of the loss function is carried out with
the Adam optimizer (Kingma and Ba, 2014), which is known for yielding quicker convergence, with
learning rate of 0.001, and mini-batch size set to 1024.

3.2 Labeling Training Data using Distant Supervision
To learn the emotion embeddings, we require a large dataset of text with corresponding emotion labels.
Due to the challenges involved in creating large-scale emotion resources (Mohammad and Turney, 2013),
however, most existing manually-annotated emotion datasets contain a very limited number of instances
and words. For example, two popular emotion datasets created by Alm (2008) and Aman and Szpakowicz
(2007) contain around 1200 sentences each and only about 5000 unique words each. At the same time,
in order for learned word representation models to be useful, they need to generalize well to diverse
domains and applications by including a much larger number of words. For instance, the vocabulary size
of most existing word representations is orders of magnitude larger (e.g., 400K to 1.9M words in GloVe
(Pennington et al., 2014), 3M words in word2vec (Mikolov et al., 2013a), and so on).

As it is quite challenging to create a large manually annotated emotion dataset due to human time
and effort required, we leverage distant supervision (Go et al., 2009) to create a weakly labeled training
dataset automatically in order to obtain emotion-enriched word representations for a much larger vocab-
ulary. Distant supervision is the process of labeling instances based on some heuristics or rules, with
some of the instances being assigned noisy or imprecise labels.

3.2.1 Distant Supervision for EWEUNI

LetD = {d1, d2, ..., dD} be the set of unlabeled documents. The goal is to generate an annotated dataset
D = {(d1, l1) , ..., (dD, lD)}, where li ∈ L is the corresponding emotion label for document di and
L = {l1, ..., lk} is a known finite set of emotion labels.

Let d =
{
w1, w2, ..., w|d|

}
denote the sequence of words in a document, wi ∈ d. For each word wi,

we compute an emotion vector a (w) = 〈a1, a2, ..., ak〉, where aj indicates the word-emotion associa-
tion as derived from a lexicon. Although technically, while any emotion taxonomy can be followed for
deriving the word-emotion vector a (w), in this work, we adopt Ekman’s (1992) model of six emotions
(anger, disgust, fear, happiness, sadness and surprise), whose origins are firmly grounded and exten-
sively verified in psychology. To this end, we select WordNetAffect (WNA) (Strapparava and Valitutti,
2004), which was developed by manually labeling the emotions of a few seed words and extending it
to all their WordNet synonyms, and NRC EmoLex (NRC) (Mohammad and Turney, 2010; Mohammad
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and Turney, 2013), which was created through crowdsourcing by annotating unigrams with one or more
of Plutchik’s (1980) eight emotions, which in turn is a superset of Ekman’s (1992) model. In WNA,
each word is associated with only one emotion, therefore aj = 1 if w is associated with that emotion,
and aj = 0 otherwise. On the other hand, in NRC, a word can be binary associated with more than one
emotion, with 1 indicating an association and 0 denoting no association. For a given word w, we extract
its binary association scores corresponding to the six categories of Ekman’s model.

The emotion vector a (d) for document d is then, the sum of the emotion vectors of all its words,
a (d) =

∑
i∈d a (wi). If the document has an association with at least one emotion, i.e., ∃j, aj (d) > 0,

then, S = argmaxi a (d), where S ⊆ L. In other words, documents assigned zero emotion score are not
considered. Finally, in case multiple emotion labels have the maximum value, i.e., |S| > 1, we sample
uniformly at random one emotion label l ∈ S.

We investigate two strategies of computing the affective knowledge: (i) one lexicon - where any one
lexicon is used to guide the labeling process; and, (ii) two or more lexicons - whereby two or more
lexicons are used in order to mitigate some effects of noisy labeling. This variant assigns an emotion
label to a document only if the labels output by both the lexicons match.

3.2.2 Distant Supervision for EWEMULTI

Some words evoke more than one emotion at the same time. For example, out of the 14,000 words
annotated with emotions in the NRC lexicon, almost 8,000 words (57%) are associated with more than
one emotion. Therefore, we relax the labeling scheme followed in EWEUNI and design EWEMULTI to
take into consideration a multi-class, multi-label setting, where a document can have more than one
emotion label.

Unlike EWEUNI, in EWEMULTI the set of all emotions with aj (d) > 0 for document d is used as final
emotion labels for d. Thus, the multi-label annotated dataset D is {(d1, S1) , ..., (dn, Sn)}, where each
document di is assigned a set of emotion labels, Si ⊆ L

3.2.3 Training Data
Our large corpus of unlabeled documents is extracted from the Amazon reviews dataset (McAuley et al.,
2015) consisting of product reviews, spanning May 1996 - July 2014. Each review (considered as a doc-
ument) is preprocessed by converting it to lowercase, tokenizing it with the NLTK toolkit (punctuation
is preserved as tokens), and filtering out reviews that are too short (less than 5 words). Note that, as the
proposed weak labeling is not dependent on any domain-specific indicators of affect such as emoticons
or hashtags, it can be easily generalized to any type of text documents.

4 Experiments

4.1 Emotion Classification

The first task validates the effectiveness of the emotion embeddings under the supervised framework of
emotion classification, where the learned word vectors are fed as features into classification models for
predicting the emotion labels. We train two classifiers: (i) L2-regularized multi-class logistic regression
(LR) and (ii) support vector machine (SVM) based on LIBSVM (Chang and Lin, 2011), to predict the
fine-grained emotion label at the sentence level. The results of 10-fold cross validation are reported in
terms of macro F1 score, which is the average F1 score over all the emotion classes. F1 score is the
harmonic mean of precision (p) and recall (r), F1 = 2 p·r

p+r .
For the emotion lexicons, we generate a feature vector consisting of the total number of words in

the sentence associated with each emotion category. For the word embedding models, we compute the
average of the word vectors of all the words in the sentence along each dimension to obtain the sentence
representation as the input to the classification algorithm.

4.1.1 Emotion Datasets
The following four benchmark emotion datasets from various genres of text are considered for emotion
classification. The statistics of the datasets are summarized in Table 2.
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dataset domain # emotions total

Alm fairy tales 5 1207
Aman blogs 6 1290
ISEAR experiences 5 5412

EmoTweet-top8 tweets 8 4664

Table 2: Statistics of emotion datasets

Methods Alm Aman ISEAR

Lexicons
WNA 0.459 0.405 0.384
NRC 0.387 0.370 0.378

WNA+NRC 0.521 0.474 0.465

EWEUNI

WNA 0.635 0.604 0.674
NRC 0.604 0.582 0.666

WNA+NRC 0.661 0.623 0.679
EWEMULTI NRC 0.630 0.602 0.666

Table 3: Comparison of using lexicons directly versus using lexicons to guide representation learning.

Alm: Emotions are particularly significant in the literary genre of fairy tales and this dataset contains
sentences marked with one of five emotion categories: angry-disgusted, fearful, happy, sad and surprised
(Alm, 2008).
Aman: Consisting of highly informal blog data, this dataset includes sentences annotated with one of
six emotions: anger, disgust, fear, joy, sadness and surprise (Aman and Szpakowicz, 2007).
ISEAR: Developed for studying the relationships among cultures and emotions, this dataset contains
personal experiences evoking seven emotions (Wallbott and Scherer, 1986). We use a subset of this
dataset marked with one of the five emotions: anger, disgust, fear, joy and sadness.
EmoTweet-28: While the other annotated datasets are modeled after existing emotion taxonomies, this
corpus was created by inductively identifying a set of emotion categories that characterize the emotions
expressed in tweets (Liew et al., 2016). For our experiments, we extract a subset (EmoTweet-top8) of
the eight most frequent emotions in the dataset.

4.1.2 Lexicons versus Representations
As the quality of the emotion embeddings depends on the underlying emotion lexicons adopted to create
the training data, we analyze the results of using the source emotion lexicons directly versus using them
to initialize EWE in Table 3.

We observe that the configurations using both the lexicons (WNA+NRC) yield better results than
using any one lexicon alone. Morevover, all the EWE embeddings demonstrate significant improvements
over using the lexicons directly, indicating that the affective word representation model learns useful
information in addition to the knowledge available in the base lexicons adopted during distant supervision
to guide the representation learning process.

4.1.3 Comparison Against State-of-the-art Representations
Next, we analyze the performance of EWE against state-of-the-art generic embeddings and task-specific
affective embeddings described below, and summarized in Table 4.
Generic Embeddings: (i) GloVe: Global vectors2 for word representations (Pennington et al., 2014)
trained on aggregated global word-word co-occurrence statistics from a corpus capture linear substruc-
tures of the word vector space. We use the vectors that were trained on: GloVe 6B: 6 billion words,
uncased, from Wikipedia 2014 and Gigaword v5, of dimension d = 300; GloVe 42B: 42 billion words,

2http://www-nlp.stanford.edu/projects/ glove/
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embeddings corpus size |V|

GloVe 6B Wiki + Gigaword 6B tokens 400K
GloVe 42B Common Crawl 42B tokens 1.9M
word2vec Google news 100B tokens 3M

SSWE Twitter tweets 10M tweets 137K
DeepMoji Twitter tweets 1B tweets 50K

EWE Amazon reviews 200K reviews 183K

Table 4: Details of compared embeddings

methods
Alm Aman ISEAR EmoTweet-top8

LR SVM LR SVM LR SVM LR SVM

GloVe 6B d =300 0.548 0.583 0.547 0.555 0.648 0.643 0.574 0.581
GloVe 42B d =300 0.590 0.624 0.564 0.609 0.675 0.671 0.609 0.614
word2vec CBOW 0.413 0.433 0.424 0.478 0.655 0.661 0.526 0.568

SSWE u 0.368 0.371 0.363 0.363 0.495 0.505 0.443 0.444
DeepMoji d =256 0.300 0.275 0.332 0.336 0.598 0.607 0.533 0.560

Retrofitting GloVe 42B 0.141 0.110 0.111 0.111 0.553 0.559 0.245 0.220
Retrofitting word2vec 0.110 0.108 0.100 0.098 0.488 0.472 0.232 0.214

EWEUNI WNA+NRC 0.632 0.661 0.602 0.623 0.679 0.679 0.610 0.618

Table 5: Comparison against state-of-the-art word representations (generic embeddings in the top half;
affective embeddings in the bottom half) on emotion classification. The best results are shown in bold,
and the second best results are underlined. Paired t-tests using the results on all four datasets indicate
EWE is significantly better than all the other methods with p-values < 0.02.

uncased, from Common Crawl, of dimension d = 300. (ii) word2vec: These word representations3

were learned with a continuous bag-of-words model (CBOW) (Mikolov et al., 2013a), where a target
word is predicted given its surrounding context words. We use the vectors that were trained on 100
billion words of Google news dataset and are of d = 300.
Affective Embeddings: (i) Sentiment-specific word embeddings (SSWE): These embeddings, obtained
using a corpus of 10 million tweets, encode the sentiment information (derived using a set of positive
and negative emoticons) of the text in the continuous representation of words4 (Tang et al., 2014). We
use embeddings that were trained with the unified model (SSWEu). (ii) DeepMoji: These word repre-
sentations were obtained from a corpus of almost 1 billion tweets weakly labeled using a set of 64 emojis
(Felbo et al., 2017). (iii) Retrofitting: Instead of directly training task-specific affective embeddings
such as SSWE and DeepMoji, Retrofitting (Faruqui et al., 2015) is a post-processing technique of tuning
existing embeddings according to a task-specific lexicon. Using WNA as the source emotion lexicon,
where words with same emotions are clustered together, we apply Retrofitting to the generic word vectors
(GloVe and word2vec).

The results of the emotion classification are presented in Table 5, with the generic embeddings model
in the top half and affective embeddings in the bottom half. In general, we observe that GloVe 42B yields
the second best results overall, and in line with other recent studies (Pool and Nissim, 2016), Retroffiting
did not improve over any original word embeddings suggesting that post-processing word embeddings
with respect to emotion knowledge requires additional considerations.

Secondly, although SSWE and DeepMoji were both trained on tweets data, they perform very differ-
ently to each other, most likely due to their extremely different choices of affect spectrum (SSWE was

3https://code.google.com/p/word2vec
4http://ir.hit.edu.cn/˜dytang/paper/sswe/embedding-results.zip
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embedding n = 10 n = 20 n = 30

SSWEu 32.6 28.8 28.2
word2vec 35.5 33.1 30.2

GloVe 35.1 32.5 30.4
EWEUNI(WNA+NRC) 36.7 33.2 31.3

Table 6: Accuracy of emotion similarity tested on emotion lexicon DepecheMood

modeled along binary polarities, whereas DeepMoji used an axis of 64 categories), thus highlighting
the importance of the emotion model adopted for creating the training dataset. In addition, and rather
surprisingly, all the generic embeddings (GloVe and word2vec) outperform all the affective embeddings
(SSWE and DeepMoji) on all the four datasets. One possible reason for this could be due to the more
generalizable sources of data that were used to induce the generic embeddings, while the affective em-
beddings were trained on tweets data, thus showing the significance of the choice of the underlying text
used to derive the representations.

Lastly, EWEUNI(WNA+NRC) statistically significantly outperforms all the other baselines across all the
four datasets, indicating the effectiveness of the proposed method.

4.2 Emotion Similarity

The second task measures the emotion similarity of the word vectors by comparing against the emotion
similarity obtained from an emotion lexicon. In this experiment, the test affective information is derived
from DepecheMood (DM) (Staiano and Guerini, 2014), an emotion lexicon consisting of 37,000 words
and their emotion scores across eight affective dimensions. We consider the emotion label of a word as
the emotion category with the maximum affective weight.

Following previous experimental setup for measuring affective consistency (Tang et al., 2014), we
compute the accuracy of emotion similarity consistency between each emotion word and its top n nearest
neighboring words as follows:

Accuracy =

m∑
i=1

n∑
j=1

α (wi, cij)

m× n
(5)

where m is the number of words in the emotion lexicon, wi is the ith word in the lexicon, cij is the jth
closest word to wi in terms of their cosine similarity, α (wi, cij) is an indicator function, where α = 1 if
wi and cij belong to the same emotion category and α = 0 otherwise. The higher the accuracy, the better
the clustering of emotionally similar words in the embedding space.

Table 6 presents the results of various embeddings for n = {10, 20, 30}, where n is the number of
nearest neighboring words. For fair comparison, for each word embeddings, only the words that appear
in both the vocabularies (i.e., DM and word embeddings) have been used. Again, we observe that generic
embeddings such as GloVe and word2vec outperform affective embeddings such as SSWE. The best
results are obtained from EWE which have been specifically trained to capture emotion similarity.

5 Qualitative and Error Analysis

To further analyze the learned emotion embedding space, we use t-SNE (van der Maaten and Hinton,
2008) to visualize the word representations of a small subset of words in Figure 2. The plots show that
compared to other models, EWE is effective in clustering emotionally similar words into neighboring
vector spaces. Figure 3 shows confusion matrix plots providing an overview for some error analysis. In
general, for imbalanced datasets such as Alm and Aman, it is observed that most misclassified instances
are incorrectly labeled as happy class, likely because the happy class contains a disproportionately large
number of training instances. Moreover, instances belonging to the surprise class are more often misclas-
sified than correctly predicted, likely because the surprise class is highly underrepresented. Balancing
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(i) SSWE (ii) word2vec

(iii) GloVe (iv) EWE

Figure 2: t-SNE visualization of word embeddings

(i) Alm (ii) Aman

(iii) ISEAR

Figure 3: Confusion matrix error analysis

the datasets might prove helpful. In ISEAR, anger and disgust classes are found to be confused with
each other and sadness seems to be challenging.

6 Conclusions

In this paper, we described a novel method of learning emotion-enriched word representations by lever-
aging distant supervision and neural networks. Significant improvements over baseline representations in
two tasks including emotion classification and emotion similarity is obtained. In addition, we presented
a qualitative analysis of the learned word vectors. As future work, we plan on considering alternate
taxonomies of emotions such as Plutchik’s (1980), obtaining emotion-enriched representations at phrase
level and exploring sentence compositionality.
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