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Abstract. In this paper, we propose a solution that partly solves the
selection and replacement problems for semantic query caching. We be-
lieve that the queries submitted by a client are not random. They have
certain meaning and may follow certain rules. We use user access graphs
to represent the query execution orders and propose algorithms that use
such information for semantic query caching. Unlike the previous ap-
proaches, ours anticipates incoming queries based on the queries that
have been submitted, analyzes the semantic relationship between them,
and rewrites and caches the current query to answer multiple queries.
Our initial experimental result shows that our solution improves cache
performance.

1 Introduction

Semantic query caching (SQC) [3,5, 6] assumes that the queries submitted by a
client are related to each other semantically. Therefore, grouping tuples according
to the semantic meaning can provide better performance than other caching
approaches (i.e., page-based or tuple-based caching). Previous research considers
every submitted query as a cache candidate. Such solution is not extendable
since the number of cache candidates for a given client application is quite large.
The cache replacement algorithms are based on the statistics (i.e., query result
size, query referencing frequency or underlying data updating frequency). The
replacement algorithms may not provide good performance since they do not
take query locality into account. Meanwhile, in order to find and retrieve the
answer of a query from caches, an algorithm is needed to examine how they are
related semantically. A special case is that the query is semantically contained
in the caches, which is called query containment. There are many studies in
this field, but the execution time of the algorithms cannot be ignored when the
number of caches is large.

In this paper, we use user access patterns to describe how a user or a client
accesses the data of a database, and explore ways to use such information for
semantic query caching. We can anticipate the queries to be submitted by using
the query execution patterns. We found that a user always accesses the same
part of the data within certain time interval. Thus, semantic relationships exist
between the corresponding queries, and can be used to rewrite and cache a query



to answer multiple queries. The rewritten queries save both the network load and
the processing cost of the server.

The rest of the paper is organized as follows. User access patterns and re-
lated issues are presented in Sect. 2. In Sect. 3, we propose three caching solu-
tions: sequential-execution, union-execution and probe-remainder-ezecution. We
present the evaluation strategies and experimental results in Sect. 4. We describe
related work in Sect. 5. Sect. 6 is the conclusion.

2 User Access Patterns

We can transform a SQL query into an SQL template and a set of parameters.
We treat each integer value or string value of a given SQL query as a parameter,
and the SQL template can be obtained by replacing each parameter in the SQL
with a wildcard character (% ). Database users often submit similar queries to
retrieve certain information from the database. We use a user access event to
represent a set of similar queries which share the same SQL template. A user
access event contains an SQL template and a set of parameters.

The query execution order, represented by a directed graph, is called a user
access graph. The graph has one start node and one or many end nodes, and
cycles may exist in a graph. Each node is a user access event. An edge is rep-
resented by e : (vi,vj,00, 5v;), Where oy, is the probability of v; following
v, which is called the confidence. The graph associates with a support value 7,
which describes how often it is executed!. For example, table 1 lists an instance
of a patient information model which retrieves a given customer’s information.
Fig. 1 shows the corresponding user access graph. The graph is a special graph
since it contains no branches or cycles. It is called a user access path.

Table 1. An instance of patient information model

Label Statement

30 select authority from employee where employee_id ='1025’

9 select count(*) as num from customer where cust_num = 1074’

10 select card_name from customer tl,member_card t2 where tl.cust_.num =
’1074’ and tl.card.id = t2.card.id

20 select contact_last,contact_first from customer where cust_num = ’1074’°

47  select tl.branch ,t2.* from record t1, treatment t2 where tl.contract_-no =
t2.contract_no and t1.cust_id =’1074’ and check_in_date =’2002/03 /04’ and
t1l.branch = ’scar’

The graph may contain a set of global variables: employee id (g-eid), cus-
tomer id (g-cid), branch id(g-bid) and check-in date (g-date). Variable g_date

! The support and the confidence have the same meaning in the field of association
rule mining.



is a system variable which equals to today’s date, and we call it as a constant
global variable. Meanwhile, g_cid is unknown before event v9 is submitted, so
the parameter of v9 is a local variable(l_cid). When v9 is submitted, g_cid is set
to the value of [_cid, then event v10,020 are determined since their parameters
are known. Thus, some nodes in the graph associate with a set of actions which
change the value of global variables according to the values of its local variables.

Global variables F_p: (g_uid, g_cid, g_bid, g_date)

v30(l_uid) va(l_cid) v10(g_cid) v20(g_cid) v47(g_cid,g_date,l_bid)
DN 079 -~ 072 090 100 -~

W U -

g_uid=l_uid g_cid=l_cid g_bid=1_bid

Fig. 1. User access path for patient information module

There are two kinds of events: determined event and undetermined event.
An event is a determined event if and only if each parameter is either a con-
stant or a global variable. Otherwise, it is undetermined. Three kinds of deter-
mined events, graph-determined event, parameter-determined event and result-
determined event, exist in a graph. If every parameter of an event is a constant
or a constant global variable, we call it a graph-determined event. Event v; is
result-determined by v;, if and only if one or more parameters of v; are unknown
until v; finishes execution®. Event v; is parameter-determined by v;, if and only
if one or more parameters are unknown until v; is submitted. For example, v30,
v9 and v47, represented by dotted cycles in the graph, are undetermined events,
and v10 andv20 are parameter-determined by v9.

We use user access patterns to describe how a client application or a group of
users access the data of a database. User access patterns include a collection of
frequent user access graphs whose support is bigger than a given threshold 7, and
a collection of user access events associated with the occurrence frequency and
the parameter distribution. In this paper, we assume that the user access graphs
are already obtained from database workload files or from the corresponding
business logic, and the graphs are broken into several user access paths which
can be processes efficiently. We are interested in finding and using the semantic
relationship between the events of the user access path.

3 SQC Selection and Replacement

3.1 SQC Selection Problem

The SQC selection problem is defined as follows. Given a user access path p and
a cache pool of size J, find a set of query rewriting rules (for semantic query

2 The difference between an undetermined event and a result-determined event is that
the parameters of the latter can be derived from the query result of other queries.



caching) to minimize the total execution cost of p. During the execution of the
queries of path p, the size of the cached data should not exceed the cache size
6. In this section, we call a user access query a parameterized query, referred to
as a query.

We first consider to generate rewriting rules for two consecutive queries u
and v, and then extend the solutions to the whole path. We assume that the
queries are SPJ (select-project-join) queries which can be written in the form
{a,7,6}, where a = {a1,aq, ...au } is a set of selection attributes, v = {v1, .k}
is a set of relations and ¢ is the predicate. The attributes involved in the query
predicate are called search attributes.

We use R, to represent the answer of 4. When query u is submitted, three
solutions can be used to retrieve R, and R,. The first solution is to pre-fetch
R,, which is called the sequential-ezecution (SEQ) solution since we execute u
and v sequentially. We may also submit the union query (uUwv) to answer both u
and v together, and it is called the union-execution (UNI) solution. In order to
retrieve the answer of the two queries from the cached data, the union query must
include both the selection attributes of them and some search attributes. The
third solution is called probe-remainder-execution (PR) solution. In this solution,
an extended version of query u, referred as to u', is submitted and cached which
includes columns needed by query v. To answer v, the solution retrieves part of
the answer from R,, as well as submitting a remainder query v’ to the server to
retrieve the tuples which are not in the cache. The UNI and PR solutions are
not applicable when two queries do not access the same relations.

The SEQ solution pre-executes queries to shorten the latency between the re-
quest and the response, while the UNI and PR solution aim to improve response
time by decreasing the network transmission cost and the server processing cost.
The SEQ has extra network transmission and server processing cost when query
v isn’t submitted. The UNI may improve server performance by accessing the
base relation only once, and the PR may cause the server to access less data.
But, the UNI and PR solutions may introduce “disjunction” and “negation”
operations respectively which may cause the server to generate different query
execution plans and increase the server processing cost. The SEQ and UNI so-
lutions have extra network transmission cost when query v isn’t submitted, but
the PR solution may save the cost by retrieving part of the query answer from
the caches.

3.2 Semantic Relationship Between Parameterized Queries

We use the similar idea presented in [5] to illustrate the possible semantic re-
lationships between two parameterized queries v and v in Fig. 2. Each query
result can be viewed as an abstract relation which is represented by a box in the
figure. The x-axis corresponds to the columns or the selection attributes, and
the y-axis corresponds to the corresponding rows of the original relations. We
are interested in the relationship between the rows since we can rewrite queries
to include more columns. We summarize these cases as:



rows

u v columns

Fig. 2. Semantic relationship between two parameterized queries

— containing-match. In case 1, the rows of u contains those of v. The union and
the probe query are both «', and there is no remainder query. Thus, the UNT
solution and the PR solution become the same. The solution usually does
not generate worse query execution plans compared to the original queries,
and the overall result size determines whether the solution is applicable.

— contained-match. In case 2, the rows of v contain those of u. The UNI and
PR solutions are the possible solutions. When o,,_.,, is small, we choose PR
solution since UNI solution has extra costs when v isn’t submitted.

— horizontal-match (h-match). In this case, v and v have the same set of rows,
but may have different columns. The UNI and the PR solution usually do
not generate worse query plans and have better query performance than the
SEQ solution. When v has more columns than u and o,_,, is small, we
choose the PR. Otherwise, we choose UNL

— u disjoint with v. In this case, there is no common rows between R, and R,
(case 4). The PR solution is not suitable, but the UNT solution is applicable
since it may save the server cost by only accessing the base relation once.

— u partial-match with v. That is, R,, and R, have common rows (case 5). All
three solutions may be applicable in this case.

— u and v are irrelevant. Two queries are irrelevant if their base relations are
different, and the only possible solution is SEQ.

3.3 Algorithms

In this section, we propose an off-line algorithm, rewriting-one, to solve the SQC
selection and replacement problem. The algorithm tries to find the semantic
relationship between » and v, builds up rewriting queries and chooses an optimal
rewriting query based on the costs. The rewriting_one algorithm is described in
Figure 3.

We assume that the predicates of 4 and v are both the conjunction of basic
predicate units which have the following format: “var op constant” or “var op
var + constant”, where the operators are {=,<,>,<,>} and the domain of
each variable is integer. The algorithm first transforms a query predicate into an
expression that only contains < operators, and builds a weighted directed graph
which describes the range of the search attributes and the relationship between



Algorithm: rewriting_one(u,v).
Input: two queries v and v.
Output: query rewriting solution.

1. solutions = {};

2. if v is undetermined, solutions={};

3. else if v is result-determined by u, solutions= {SEQ};
4. else if u and v are irrelevant, solutions = {SEQ};

5. else G, = weighted directed_graph(d.);

6. G, = weighted_directed_graph(d,);

7. comm_dif f(Gy, Gy,comm,dif f);

8. rel = relation(comm, dif f);

9. switch (rel):
10. case containing:solutions = {UNI};
11. case contained,h_match:solutions = {UNI, PR};
12. case disjoint: solutions = {SEQ,UNI};
13. case partial-match: solutions = {SEQ,UNI, PR}
14. build_queries(cw, av, comm, dif f);

15. select a solution based on the overall costs.

Fig. 3. Algorithm rewriting_one

them?. An edge e(z,y,c) of the graph means that = < y + ¢ holds. For example,
given queries:

— ul: “select al from r1 where a2=1 and a3<3”
— u2: “select al from r1 where a2=1"
— u3: “select al from r1 where a2=1 and a3>17,

and we want to generate query rewriting rules for query pair »! and «2, and for
query pair u2 and u3. The graphs are listed in Figure 4, where the dotted edges
are marked as derived since they are derived from other edges.

In step 7, the algorithm builds the common edges set (comm) and the dif-
ferent edges set (diff ) between two graphs. For each edge in Gy, the algorithm
tries to find the corresponding edge in G,, or vice versa. If the weights of two
edges are the same, we add them to comm set, otherwise we add them to diff
set. For example, u! and u2 have the same predicate unit a2=1 which corre-
sponds to two identical edges in the graphs. In step 8 of the algorithm, we find
the relationship between two queries by testing each pair of edges in the diff
set. If two queries have h-match relationship, the diff set is empty. If they have
contained-match relationship, then for each edge pair < e, e, > in the diff set,
either e, is null or e, has a larger weight than e,. The containing-match can
be tested in a similar way. The disjoint-match is obtained by testing whether
u N v has an answer, which in turn tests whether there is a negative circle in
the graph of u Nw. In step 9, we convert the edges of the diff and the comm set

3 Weighted directed graph was first introduced in [8]
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Og
ut and u2: u2 and u3:
comm:={(a2,0,1),(0,a2,-1)}. comm:={ (0,a2,-1),(a2,0,1) }.
diff={<(a3,0,3),null>, <null,(0,a3,-1)>, diff={ <(a2,a3.0), null> . <(0.a3 -1).null}

<(a3,a2,2),null>,<null,(a2,a3,0)>}

Relation = partial_match. Relation = contained _match.

Fig. 4. Weighted directed graphs for query ul, u2, and u3

into corresponding predicate units, and use logic conjunction, disjunction and
negation operators to connect them.

In the previous example, ul partial-matches with u2, and u2 is contained by
u3. The rewriting queries for v1 and u2 are:

— union query: “select al,a3 from r1 where a2=1"
— probe query: “select al,a8 from r1 where a2=1 and a3 <3”
— remainder query: “select al from r1 where a2=1 and t3 >3”.

The rewriting-one algorithm can also process queries which contain join oper-
ations. For example, query 10 in Figure 1 is a join query, which can be rewritten
as “select card_name from member_card where card_id in (select card_id from
customer t1 where t1.cust_num =’1074’)”, and the sub-query has h-math with
queries 9 and 20. Algorithm rewriting-one only considers two consecutive queries
in a path, and in many cases, two consecutive queries do not have a strong re-
lationship, such as h-match, containing-match, or contained-match. Thus, we
suggest a rewriting-n algorithm which can generate global optimal plans by con-
sidering all queries in the path together. The algorithm finds a candidate set for
every query, and analyzes the relationship between them. Then the algorithm
sorts the set according to the rank of the relationships, and an optimal plan
is generated by applying a heuristic method based on accumulative costs and
available spaces.

4 Performance Evaluation and Experiments

We propose and implement a database proxy program S@QL-Relay, to be the
platform of our SQC solution. SQL-Relay is an event-driven, rule-based database
proxy program which intercepts every message sent from the client or the server,
and treats it as an event. It traces the user request sequence for each connected
client. When the sequence matches one user access path, a set of pre-defined
rewriting rules are applied. The SQL-Relay cache manager manages two kinds



of caches: the global caches and the local caches. All connected clients share
a global cache pool which is managed by using the LRU replacement policy.
Meanwhile, each client also has a local cache pool. Each local cache entry has
a reference count which indicates how many queries can be (partly) answered
currently. When the reference count of an entry becomes zero, it is moved to the
global cache pool, and we move all local caches into the global cache pool when
a path finishes execution. To maintain the caches efficiently, we use the similar
idea in [6] to describe the contents of each cache entry by using a predicate
description, and discard the cache when the content of it is changed.

Now, we present the experimental result of an OLTP application. A clinic
office has a client application, Danger Front, which helps the employee check in
patients, make appointments and sell products. After preprocessing one day’s
database queries log, we found 12 instances of the application. The query log
has 9,344 SQL statements in 190 SQL templates, where 72% (136) of queries
are SPJ queries. 718 sequences are found from the log. They belong to 21 user
access paths which have support bigger than 10. We generate 19 SEQ rules, 4
UNI rules and 3 PR rules by using the rewriting-n algorithm.

We use MySQL as our database server which features a server-side query
cache function, and compare the performance of server caching with our ap-
proach. The connection speed between the database and the SQL-Relay is 56
Kbps, and the speed between the clients and the SQL-Relay is 10 Mbps. We syn-
thesize 300 client request sequences based on the path supports, and compare the
cache performance under the following conditions: (1) executing queries with-
out cache, (2) executing queries with 128K server cache, (3) pre-fetching queries
based on user access patterns, and (4) using rules generated by using rewriting-n.
In case 3 and 4, the caching function of MySQL is disabled and the SQL-Relay
configures with a 128K cache. Each connected client has 4K local caches, and
the size of global caches dramatically changes as more clients get connected or
disconnected.

Table 2. Comparison of cache performance (per 100 queries).

response global  local queries sent network server
time (s) cache hit cache hit to server  traffic(K bytes) I/O (K blocks)

case 111.4 N/A N/A 100 61.0 1,390
case 2 11.2 19.1 N/A 100 62.1 1,182
case 3 10.8 20.2 10.5 82.6 63.7 1,207
case 4 10.3 21.3 6.4 78.2 50.6 1,108

The result is listed in Table 2. The query response time is calculated at the
client side. It includes server processing time, network transmission time, cache
processing and maintaining time. We found 87% of queries are selection queries
which did not change the state of the server. Thus the cache maintenance cost



is not too high. The response time of our solution is the shortest since it saves
both network transmission time and server processing time. The pre-fetching
case has better response time than the server caching, but it doesn’t improve
server performance and has heavier network traffic than the latter.

Figure 5 shows the cache performance when the support of a path or the
confidence of an event changes. We decrease the support of paths by increasing
the frequency of random paths. The result is shown on the left of the figure. It
shows that the network load decreases, and so does the local cache hits, since
the paths are not frequent. Then we do not change the support of the paths, but
decrease the confidence of queries in a path by increasing the frequency of the
random queries. The result is shown on the right of the figure. It shows that the
network load as well as the local cache hits also decrease since we cannot find
suitable rules.
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Fig. 5. Cache performance with different support or confidence. (per 100 queries)

5 Related Work

The cache selection and replacement problem has been extensively studied in
[11]. Sellis proposes the cache selection algorithms for both the unbounded space
where the available cache space is infinite and the bounded space where there is
limited space. Sellis suggests various rank functions for an LRU-like replacement
policy. Dar et al [3] use a semantic region as the unit of cache replacement. Their
replacement policies can be based on temporal locality or spatial locality. Keller
and Basu [6] use predicate descriptions to describe the cached data for each
previously-asked query. They focus on using server-side and client-side predicate
description to maintain the cached data efficiently. Godfrey and Gryz [5] provide
a comprehensive logic-based framework of semantic query caching by using Dat-
alog, and introduce the concepts of semantic overlaps, semantic independence
and semantic query remainder.

Similar studies focus on using database access patterns to predict the buffer
hit ratio [1,2], to improve caching performance of OLAP systems [10], and to



generate global optimal query execution plans [4,9]. In [10], Sapia discusses the
PROMISE approach which provides the cache manager with access patterns to
make prediction in the OLAP environment. Finkelstein [4] describes an algo-
rithm to detect common expressions between a set of queries. Multiple query
optimization [9] generates global optimal query execution plans for multiple
queries. Their solutions are server-side solutions which help the server to pro-
cess multiple queries, but the intermediate results may be too large to be cached
by a client or a mediator.

6 Conclusion

In this paper, we propose a method that preforms semantic query caching by
using user access patterns. To our knowledge, it is the first attempt to make use
of such information for semantic query caching. Compared with other semantic
query techniques, our SQC approach has several advantages. Our caching algo-
rithms are based on the query execution orders and the semantic relationship
between queries, which are better than the selection policies based on the global
query reference statistics. The pre-defined query writing rules simplify the cache
finding and replacing procedure. Our SQL-Relay application is flexible and ex-
tendable where various caching and rewriting rules can be added and tested. We
would like to thank Professor Jarek Gryz for providing valuable feedback on this

paper.
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