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Abstract. We propose a novel and efficient momentum-based first-order
algorithm for optimizing neural networks which uses an adaptive coeffi-
cient for the momentum term. Our algorithm, called Adaptive Momen-
tum Coefficient (AMoC), utilizes the inner product of the gradient and
the previous update to the parameters, to effectively control the amount
of weight put on the momentum term based on the change of direc-
tion in the optimization path. The algorithm is easy to implement and
its computational overhead over momentum methods is negligible. Ex-
tensive empirical results on both convex and neural network objectives
show that AMoC performs well in practise and compares favourably with
other first and second-order optimization algorithms. We also provide a
convergence analysis and a convergence rate for AMoC, showing theo-
retical guarantees similar to those provided by other efficient first-order
methods.

Keywords: Adaptive Momentum · Neural Networks · Optimization ·
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1 Introduction

First order optimization methods such as Stochastic Gradient Descent (SGD)
with Momentum [21] and their variants are the methods of choice for optimizing
neural networks. While there has been extensive work on developing second-
order methods such as Hessian-Free optimization [11] and Natural Gradients [1,
12], such methods have not been successful in replacing the first-order ones due
to their large per-iteration costs in time and memory.

Although Nesterov’s accelerated gradient and its modifications have been
very effective in deep neural network optimization [21], it has been shown that
Nesterov’s method might perform suboptimal for strongly convex functions [2]
without looking at local geometry of the objective function. Further, in order to
get the best of both worlds, search for optimization methods which combine the
efficiency of first-order methods and the effectiveness of second-order updates is
still underway.
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In this work, we introduce an adaptive coefficient for the momentum term
in the Heavy Ball and Nesterov methods as an effort to combine first-order and
second-order methods. We call our algorithm Adaptive Momentum Coefficient
(AMoC). The adaptive coefficient effectively weights the momentum term based
on the change in direction on the loss surface in the optimization process. The
change in direction can contribute as implicit local curvature information with-
out resorting to the expensive second-order information such as the Hessian or
the Fisher Information Matrix.

Our experiments show the effectiveness of the adaptive coefficient on both
strongly-convex functions with Lipschitz gradients and neural network objec-
tives. AMoC can speed up the convergence process significantly in convex prob-
lems and performs well in the neural network experiments. AMoC has similar
time-efficiency as first-order methods (e.g. Heavy Ball, Nesterov) while reaching
lower errors.

The structure of the paper is as follows. In section 2, we give a brief back-
ground on neural network optimization methods. In section 3, we introduce our
adaptive momentum coefficient algorithm and discuss its merits. In section 4,
we analyse the convergence of the algorithm and provide a convergence rate.
In section 4, we discuss some of the related work in the literature. Section 5
illustrates the algorithm’s performance on convex and non-convex benchmarks.
Proofs and details regarding the algorithm and the experiments can be found in
the Appendix.

2 Background

We consider a neural network with a differentiable loss function f : RD → R
with the set of parameters θ. The objective is to minimize the loss function f
with a set of iterative updates to the parameters θ. Gradient descent methods
use the following update:

θt+1 = θt − ε∇f(θt) (1)

where ε is the learning rate. However, this update can be very slow and determin-
ing the learning rate ε can be hard. A large learning rate can cause oscillations
and overshooting. A small learning rate can slow down the convergence drasti-
cally.

Heavy Ball method. In order to speed up the convergence of gradient descent,
one can add a momentum term [18].

dt+1 = µdt − ε∇f(θt); θt+1 = θt + dt+1 (2)

where d is the velocity and µ is the momentum parameter.

Nestrov’s method. Nesterov’s accelerated gradient [16] can be rewritten as a
momentum method [21]:

dt+1 = µdt − ε∇f(θt + µdt); θt+1 = θt + dt+1 (3)
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Algorithm 1: AMoC (Adaptive Momentum Coefficient)

1 Initialize θ1
2 Set d1 = 0
3 for t = 1 to T do
4 Calculate the gradient gt = ∇f(θt)
5 Calculate adaptive coefficient γt = µ

(
1− β(ḡt · d̄t)

)
6 Calculate update dt+1 = γtdt − εgt
7 Update parameters θt+1 = θt + dt+1

Nesterov’s momentum is different from the heavy ball method only in where we
take the gradient. Note that in both methods dt is the previous update θt−θt−1.

3 Adaptive Momentum Coefficient

We propose Adaptive Momentum Coefficient (AMoC) as an alternative to the
fixed momentum parameter in the Heavy Ball and Nesterov’s algorithms. The
adaptive coefficient utilizes the angle between the direction of the current gradi-
ent vector and the previous update to the parameters. This angle is characterized
by the inner product between the normalized vectors of these two values, namely

ḡt · d̄t = cos (π − φt) where ḡt =
gt
‖gt‖

; d̄t =
dt
‖dt‖

(4)

where φt is the angle between the negative gradient −gt and the previous update
dt. Our goal with the adaptive coefficient is to automatically reinforce the mo-
mentum term when these two directions align and gradually decrease this effect
when they don’t. Thus we propose the following coefficient for the momentum
term:

γt = µ
(
1− β(ḡt · d̄t)

)
(5)

where µ ≥ 0 is the regular momentum parameter and β ≥ 0 is a parameter
controlling the amount of weight put on the inner product. With a large β, the
algorithm will behave more aggressively, meaning, moving rapidly when direc-
tions align and bouncing back when they don’t, which is suitable for convex
functions. A small β however, leads to a more conservative behaviour, which is
expected when optimizing non-convex objectives, e.g., neural networks (to avoid
being trapped in local optima, for example). Since φ can range from 0 to π,

µ(1− β) ≤ γt ≤ µ(1 + β) (6)

Note that if we set β to zero, γt reduces to the regular momentum parameter for
Heavy Ball, which can be seen as a special case of our algorithm. The adaptive
coefficient embeds a notion of change of direction of the optimization path.
This notion can be interpreted as implicit second-order information where it
tells us how much the current gradient’s direction is different from the previous
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gradients which is similar to what second-order information (e.g. the Hessian)
provides intuitively:

H(θt) = ∇2f(θt) (7)

The Hessian provides the rate of change in the gradient of a function at a point
while the gradient tells us the rate of change of the function itself. Since the pre-
vious update contains a running estimate of the past gradients, the dot product
is basically comparing the current gradient against all aggregated past gradients.

The algorithm (AMoC) is shown in Algorithm 1. We also incorporate Nes-
terov’s lookahead gradient into AMoC by simply taking the gradient at a further
point, gt = ∇f(θt + µdt), thus only changing line 4 of Algorithm 1. We call this
version of the algorithm AMoC-N, with “N” standing for Nesterov.

4 Convergence Analysis

To analyse AMoC’s convergence, consider a differentiable convex function f with
Lipschitz gradients. On this class of functions, similar to the Heavy Ball algo-
rithm, AMoC benefits from a convergence rate of order 1/T with a slightly dif-
ferent factor. To prove this proposition, we need to define the following sequence
of coefficients:

Definition. The sequence {λk} is defined as:

λk+1 =
λk
γk
− 1, λ1 =

µ(1− β)

1− µ(1− β)
(8)

Lemma. For arbitrarily large integer T , there exists β > 0 such that the first
T + 1 elements of the sequence {λk} are positive.

Proof. See appendix A.

This lemma provides us with the proper β for the following theorem. This theo-
rem guarantees the convergence of the algorithm, and provides an upper-bound
for the convergence rate of a specific weighted average of all iterates.

Theorem. For any differentiable convex function f with L-Lipschitz gradients,
the sequence generated by AMoC with sufficiently small β, µ ∈ [0, 1

1+β ), and

ε ∈ (0, µ(1+β)Lλ1
) satisfies the following:

f(θ̃T )− f(θ∗) ≤ ‖θ1 − θ∗‖2

2T (1 + λT+1)

(1

ε
+
λ21L

µ

)
(9)

where θ∗ is the optimal point and θ̃T = (
∑T
k=1

λk

γk
θk)/(

∑T
k=1

λk

γk
).

Proof. See appendix A.

It can be easily verified that by setting β to 0, all the elements of the sequence
{λk} will be equal to µ

1−µ and (9) becomes the same bound as the one for the

Heavy Ball algorithm presented in [6].
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5 Related Work

There has been extensive work on large-scale optimization techniques for neural
networks in recent years. A good overview can be found in [3]. Here, we discuss
some of the work more related to ours in three parts.

5.1 Gradient Descent Variants

Adagrad [5] is an optimization technique that extends gradient descent and
adapts the learning rate according to the parameters. Adadelta [24] and RM-
Sprop [22] improve upon Adagrad by reducing its aggressive deduction of the
learning rate. Adam [9] improves upon the previous methods by keeping an ad-
ditional average of the past gradients which is similar to what momentum does.
Adaptive Restart [17] proposes to reset the momentum whenever rippling be-
haviour is observed in accelerated gradient schemes. AggMo [10] keeps several
velocity vectors with distinct parameters in order to damp oscillations. AMS-
Grad [19] on the other hand, keeps a longer memory of the past gradients to
overcome the suboptimality of the Adam on simple convex problems.

5.2 Accelerated Methods

Several recent works have been focusing on acceleration for gradient descent
methods. In [13], the authors propose an adaptive method to accelerate Nes-
terov’s algorithm in order to close a small gap in its convergence rate for strongly
convex functions with Lipschitz gradients adding a possibility of more than one
gradient call per iteration. In [20], the authors propose a differential equation
for modeling Nesterov inspired by the continuous version of gradient descent,
a.k.a. gradient flow. The authors in [23] take this further and suggest that all
accelerated methods have a continuous time equivalent defined by a Lagrangian
functional, which they call the Bregman Lagrangian. Recently, in [4] the authors
propose a differential geometric interpretation of Nesterov’s method for strongly-
convex functions with links to continuous time differential equations mentioned
earlier and their Euler discretization.

5.3 Second-order Methods

Second-order methods are desirable because of their fine convergence properties
due to dealing with bad-conditioned curvature by using local second-order in-
formation. Hessian-Free optimization [11] is based on the truncated-Newton ap-
proach where the conjugate gradient algorithm is used to optimize the quadratic
approximation of the objective function. The natural gradient method [1] re-
formulates the gradient descent in the space of the prediction functions instead
of the parameters. This space is then studied using concepts in differential ge-
ometry. K-FAC [12] approximates the Fisher information matrix which is based
on the natural gradient method. Our method is different since we are not us-
ing explicit second-order information but rather implicitly deriving curvature
information using the change in direction.
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Table 1: Number of iterations to convergence for the strongly-convex functions
with Lipschitz gradients experiment. Note that in our experiments, Adam did
not converge for the Smooth-BPDN and Ridge Regression problem.

AMoC AMoC-N Heavy Ball Nesterov Adam

Anisotropic Bowl 78 50 1901 1749 888

Smooth-BPDN 59 77 110 115 –

Ridge Regression 1160 1817 > 3000 > 3000 –

6 Experiments

We evaluated AMoC on strongly convex functions with Lipschitz gradients and
neural network objectives including Autoencoders, Residual Networks and LSTMs.
We compare our algorithm with Heavy-Ball, Nesterov, and Adam in addition
with K-FAC in the Autoencoder experiment. Our neural network experiment se-
tups closely follow [10], were tuned for best performance on the validation set and
implemented in PyTorch (except K-FAC, where we used its official Tensorflow
code3 with the optimal parameters). See Appendix B for a detailed discussion
of the inner product values during these experiments.

6.1 Strongly Convex and Lipschitz functions

We borrow these three minimization problems from [13] where the authors try
to accelerate Nesterov’s method by using adaptive step sizes. The problems are
Anisotropic Bowl, Ridge Regression and Smooth-BPDN. We fix the momentum
parameter µ for all methods which is set to 0.99 for the Anisotropic Bowl and 0.9
for the other two problems. The learning rate ε for all methods is tuned for best
performance. The parameter β in our algorithms is set to 1 for the Anisotropic
Bowl for both AMoC and AMoC-N, 0.1 for Ridge Regression for both methods
and 1 for AMoC in Smooth-BPDN and 0.1 for AMoC-N in the same problem.
Results are shown in Figure 1 and Table 1.

Anisotropic Bowl. The Anisotropic Bowl is a bowl-shaped function with a con-
straint to get Lipschitz continuous gradients:

f(θ) =

n∑
i=1

i · θ4(i) +
1

2
‖θ‖22, subject to ‖θ‖2 ≤ τ (10)

As in [13], we set n = 500, τ = 4 and θ0 = τ√
n
1. Figure 1a and 1b (magnified)

show the convergence results for our algorithms and the baselines. The algo-
rithms terminate when f(θ) − f(θ∗) < 10−12. AMoC-N and AMoC take only
50 and 78 iterations to converge, while the closest result is that of Adam which
takes 888 iteration to converge.

3 https://github.com/tensorflow/kfac
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Fig. 1: Results from experiments on strongly convex functions with Lipschitz
gradients. All methods start from the same point. The vertical axes show the
distance to the optimal value (f−f∗, where f∗ = f(θ∗)) and the horizontal axes
show the number of iterations.

Ridge Regression. The Ridge Regression problem is a linear least squares func-
tion with Tikhonov regularization:

f(θ) =
1

2
‖Aθ − b‖22 +

λ

2
‖θ‖22 (11)

where A ∈ Rm×n is a measurement matrix, b ∈ Rm is the response vector and
λ > 0 is the ridge parameter. The function f(θ) is a positive definite quadratic
function with the unique solution of θ∗ = (ATA+ λI)−1AT b.

Following [13], m = 1200, n = 2000 and λ = 1. A is generated from UΣV T

where U ∈ Rm×m and V ∈ Rn×m are random orthonormal matrices and Σ ∈
Rm×m is diagonal with entries linearly distanced in [100, 1] while b = randn(m, 1)
is drawn i.i.d. from the standard normal distribution. Figure 1d shows the results
where AMoC and AMoC-N converge in 1160 and 1817 iterations respectively.
The Nesterov version of the algorithm (AMoC-N) is not able to outperform
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the regular version as is the case with the original Heavy Ball and Nesterov
algorithms. The tolerance is set to f(θ)− f(θ∗) < 10−13. We have not included
Adam since it was not able to perform well in this problem (also see [19]).

Smooth-BPDN. Smooth-BPDN is a smooth and strongly convex version of the
BPDN (basis pursuit denoising) problem:

f(θ) =
1

2
‖Aθ − b‖22 + λ‖θ‖`1,τ +

ρ

2
‖θ‖22 (12)

where:

‖θ‖`1,τ =

{
|θ| − τ

2 if |θ| ≥ τ
1
2τ θ

2 if |θ| < τ

and ‖·‖`1,τ is a smoothed version of the `1 norm also known as Huber penalty
function with half-width of τ .

As in [13], we set A = 1√
n
· randn(m, 1) where m = 800 and n = 2000, λ =

0.05, τ = 0.0001. The real signal is a random vector with 40 non-zero values and

b = Aθ∗+ e where e = 0.01‖b‖2√
m
· randn(m, 1) is Gaussian noise. Since we cannot

find the solution analytically, Nesterov’s method is used as an approximation to
the solution (f(θ∗N )) and the tolerance is set to f(θ) − f(θ∗N ) < 10−12. Figure
1c shows the results for the algorithms. AMoC-N and AMoC converge in 77
and 59 iterations respectively, outperforming all other methods. We observe the
weakness of the lookahead gradient in this problem as well. Similarly, Adam was
not able to perform well and hence not included it in the graph (also see [19]).

6.2 Deep Autoencoders

To evaluate the performance of AMoC, we apply it to the benchmark deep
autoencoder problem first introduced in [8] on the MNIST dataset. We use the
same network architectures as in [8] which is [1000 500 250 30 250 500 1000]
except we use ReLU activation throughout the model. Our baselines are the
Heavy Ball algorithm [18], SGD with Nesterov’s Momentum [21] and K-FAC
[12], a second-order method utilizing natural gradients using an approximation
of the Fisher information matrix.

We use 90% of the training data for training and 10% for validation. All
methods use the same parameter initialization scheme. All methods except K-
FAC (which use a special learning rate and momentum schedule along with an
increasing batch size schedule), use a fixed momentum parameter and we decay
the learning rate by 0.1 at epochs 200 and 400. The parameter β is set to 0.1.
For the momentum parameter µ, we did a search in {0.9,0.99,0.999} and the
learning rate in {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. The minibatch
size was set to 200. We set β2 in Adam to 0.999 and searched over {0.9, 0.99,
0.999} for β1.

The training and validation results for 500 epochs of training are shown in
Figure 2 and the test set results are shown in Table 2. AMoC and AMoC-N out-
perform the baselines in terms of validation error and perform similarly to each
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Fig. 2: Training and Validation Error during training for the MNIST Autoen-
coder experiment. The vertical axes show the Mean Squared Error (reconstruc-
tion error) and the horizontal axes show the number of epochs.

Table 2: Test errors from the MNIST Autoencoder experiment.

AMoC AMoC-N Heavy Ball Nesterov Adam K-FAC

2.08 2.08 2.20 2.16 2.72 6.07

other. K-FAC outperforms all methods in terms of training error but overfits to
the dataset with the default parameters. Use of Nesterov’s lookahead gradient
does not affect the performance significantly in both Heavy Ball and AMoC.
Adam performs poorly relative to other methods in this experiment. Further,
AMoC and AMoC-N reach the lowest testing error among the algorithms fol-
lowed by Nesterov and Heavy Ball.

6.3 Residual Networks

The classification experiments were done using 34-layer residual networks [7] on
two datasets of CIFAR10 and CIFAR100. Results are shown in Figure 3 and
Table 3. We trained each model for 300 epochs using 80% of the training data
while holding out a random 20% for validation.

We used a batch size of 128 and searched for the learning rate in {0.1, 0.05,
0.01, 0.005, 0.001, 0.0005, 0.0001} while decaying by 0.1 at epochs 150 and 250.
β1, β2 and µ were set similar to the Autoencoder experiment. β was set to 0.2
for CIFAR10 and 0.1 for CIFAR100. Batch normalization and a weight decay of
0.0005 were used in the models. Data augmentation was also limited to random
resized cropping and horizontal flips.

In the CIFAR10 experiment, the algorithms AMoC, AMoC-N, Heavy Ball
and Nesterov outperform Adam and perform similarly among themselves. How-
ever, AMoC achieves the highest accuracy on the test set. For CIFAR100, AMoC
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Fig. 3: Results from the ResNet-34 experiments on CIFAR10 and CIFAR100.
The vertical axis for the figure on the left shows the loss and of the figure on the
right shows the accuracy. The horizontal axes show the number of epochs.

Table 3: Test accuracy (%) from the ResNet-34 experiments.

AMoC AMoC-N Heavy Ball Nesterov Adam

CIFAR10 89.37 88.23 88.8 88.75 86.48

CIFAR100 68.05 68.26 64.04 64.04 63.58

and AMoC-N outperform other methods by a noticeable margin, while the base-
lines perform similarly. Our algorithms also reach the highest accuracy on the
test set with AMoC-N slightly higher.

6.4 LSTMs

We also experimented with LSTM word-level language models on the Penn Tree-
bank dataset following the experimental setting of [14]. The LSTM model used
has 3 layers each with 1150 hidden nodes with an embedding size of 400. Dropout
is used with the probability of 0.1 on the embedding layer, 0.65 on the input
embedding layer and 0.3 in the hidden layers. A weight decay of 1.2e-6 is used
along with weight drop with a probability of 0.5 and temporal activation regu-
larization with scaling of 1. L2 regularization is also used on the activations with
a scale of 2.

We used a batch size of 80 and searched over {20, 15, 10, 5, 1, 0.5, 0.1, 0.05,
0.01, 0.005, 0.001} for the learning rate. We decay the learning rate by 0.1 at
epochs 200, 300 and 400 while training for 500 epochs. β1, β2 and µ were set
similar to the previous experiments. β in our algorithms was set to 0.2.

The results are shown in Figure 4 and Table 4. All methods reach simi-
lar training perplexity with AMoC-N and Nesterov reaching lower validation
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Fig. 4: Training and Validation perplexity from the LSTM experiments on the
Penn Treebank dataset. The vertical axes show the perplexity of the language
model and the horizontal axes show the number of epochs.

Table 4: Test perplexity from the LSTM Penn Treebank experiment.

AMoC AMoC-N Heavy Ball Nesterov Adam

58.16 57.61 57.91 57.80 59.47

perplexity followed by AMoC and Heavy Ball. AMoC-N achieves the lowest per-
plexity on the test set.

7 Conclusions

We proposed a novel and efficient momentum-based algorithm, AMoC, by intro-
ducing an adaptive coefficient for the momentum term. We compared AMoC
against SGD with Nesterov’s momentum, regular momentum (Heavy Ball),
Adam and a recently proposed second-order method, K-FAC, on both convex
functions and non-convex neural network objectives including Autoencoders,
CNNs and RNNs. We saw that AMoC is able to perform well in various set-
tings compared to popular first order and second-order methods. AMoC’s imple-
mentation is straightforward and is computationally efficient. We also analyzed
AMoC’s convergence properties and proposed a convergence rate similar to that
of the Heavy Ball algorithm. We believe that AMoC offers a new and promis-
ing direction in convex and non-convex optimization research and in particular,
neural network optimization.
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A Proofs

Lemma. For arbitrarily large integer T , there exists β > 0 such that the first
T + 1 elements of the sequence {λk} are positive.

Proof. Consider λ1 to λk are positive and λk+1 is negative. We have:

λj+1 −
µ(1 + β)

1− µ(1 + β)
=
λj
γj
− 1

1− µ(1 + β)

≥ λj
µ(1 + β)

− 1

1− µ(1 + β)

=
λj − µ(1+β)

1−µ(1+β)

µ(1 + β)

Combining all the inequalities for j = 1, ..., k results:

− µ(1 + β)

1− µ(1 + β)
≥ λk+1 −

µ(1 + β)

1− µ(1 + β)

≥
λ1 − µ(1+β)

1−µ(1+β)

(µ(1 + β))k

=
−2µβ

(1− µ)2 − µ2β2
/(µ(1 + β))k

therefore:

k ≥ ln
(µ(1 + β)(1− µ(1− β))

2µβ

)
/ln
(
µ(1 + β)

)
The right-hand side of this inequality approaches +∞ as β approaches 0. Thus,
by choosing a small enough β, we achieve arbitrarily large number of positive
terms.

Theorem. For any differentiable convex function f with L-Lipschitz gradients,
the sequence generated by AMoC with sufficiently small β, µ ∈ [0, 1

1+β ), and

ε ∈ (0, µ(1+β)Lλ1
) satisfies the following:

f(θ̃T )− f(θ∗) ≤ ‖θ1 − θ∗‖2

2T (1 + λT+1)

(1

ε
+
λ21L

µ

)
(13)

where θ∗ is the optimal point and θ̃T = (
∑T
k=1

λk

γk
θk)/(

∑T
k=1

λk

γk
).

Proof. To prove this theorem, we follow a similar approach as [6]. By definition
we have:

dk = θk − θk−1
gk = ∇f (θk)

γk = µ
(
1− βḡk · d̄k

)
θk+1 = θk − εgk + γkdk
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therefore:

θk+1 + λk+1dk+1 = (λk+1 + 1) θk+1 − λk+1θk

= θk −
ελk
γk

gk + λkdk

By subtracting θ∗ and seting δk = θk − θ∗, we get:

‖δk+1 + λk+1dk+1‖2 = ‖δk + λkdk‖2 +

(
ελk
γk

)2

‖gk‖2

− 2αλk
γk

δk · gk −
2ελ2k
γk

gk · dk
(14)

According to [15, Theorem 2.1.5], δk · gk ≥ f(θk) − f(θ∗) + 1
2L‖gk‖

2 which
combined with (14) results:

‖δk+1 + λk+1dk+1‖2 ≤‖δk + λkdk‖2 +

(
ελk
γk

)2

‖gk‖2

− 2ελk
γk

(
f(θk)− f(θ∗) +

1

2L
‖gk‖2

)
− 2ελ2k

γk
gk · dk

≤‖δk + λkdk‖2 −
2ελk
γk

(f(θk)− f(θ∗))

− 2ελ2k
γk

gk · dk

Summing up all the inequalities for k = 1, ..., T yields:

0 ≤ ‖δT+1 + λT+1dT+1‖2 ≤‖δ1‖2 − 2ε

T∑
k=1

λk
γk

(f(θk)− f(θ∗))

− 2ε

T∑
k=1

λ2k
γk
gk · dk

≤‖δ1‖2 − 2ε(

T∑
k=1

λk
γk

)
(
f(θ̃k)− f(θ∗)

)
− 2ε

µ

T∑
k=1

λ2k ‖gk‖ ‖dk‖
ḡk · d̄k(

1− βḡk · d̄k
)

For β < 1, function x
1−βx is convex for x ∈ [−1, 1], thus:

0 ≤‖δ1‖2 − 2ε(

T∑
k=1

λk
γk

)
(
f(θ̃k)− f(θ∗)

)
− 2ε

µ

∑T
k=1 λ

2
kgk · dk

1− β
∑T

k=1 λ
2
kgk·dk∑T

k=1 λ
2
k‖gk‖‖dk‖
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Function x
1−βx is also increasing, and gk · dk ≥ f(θk) − f(θk−1) [15, Theorem

2.1.5], therefore:

2ε(

T∑
k=1

1 + λk+1)
(
f(θ̃k)− f(θ∗)

)
≤ ‖δ1‖2 −

2ε

µ

∑T
k=2 λ

2
k (f(θk)− f(θk−1))

1− β
∑T

k=2 λ
2
k(f(θk)−f(θk−1))∑T

k=1 λ
2
k‖gk‖‖dk‖

Furthermore, easily one can show that sequence {λk} is decreasing, and

T∑
k=2

λ2k (f(θk)− f(θk−1)) ≥ −λ21 (f(θ1)− f(θ∗))

Therefore:

2εT (1 + λk+1)
(
f(θ̃k)− f(θ∗)

)
≤‖δ1‖2 +

2ε

µ

λ21 (f(θ1)− f(θ∗))

1 + β
λ2
1(f(θ1)−f(θ∗))∑T
k=1 λ

2
k‖gk‖‖dk‖

≤‖δ1‖2 +
2ε

µ
λ21 (f(θ1)− f(θ∗))

≤‖δ1‖2 (1 +
ε

µ
λ21L)

where the final inequality follows from f(θ1) − f(θ∗) ≤ L
2 ‖δ1‖

2 [15, Theorem
2.1.5], and concludes the proof.

B Inner Product Analysis

In this section we report the value of the inner product (ḡt · d̄t) for AMoC and
AMoC-N per iteration/epoch for each of the experiments in Figures 5 and 6.
The results from the Anisotropic Bowl and the Smooth-BPDN experiments are
particularly interesting. In the first case (Figure 5a), with the inner product
oscillating between positive and negative values, we can infer that the algorithm
is crossing the optimum multiple times (without overshooting) but is able to
bounce back and reach the optimum point eventually and in less iterations than
the baselines. The second case (Figure 5c) behaves in a similar way, except the
algorithm seems to be moving close to the optimum but going up again and
bouncing back several times (most likely in an oval-shaped trajectory) until it
gets close enough that it terminates. In the Ridge Regression problem (Figure
5b), the inner product drops from values between 0.5 and 1 to values between
-0.5 to -1, indicating that the algorithm is moving towards the optimum steadily,
with the updates always keeping a low angle with the gradient. In the neural
network experiments (Figures 6a to 6d), the inner product gets closer to 0 by
the end of training. We link this behaviour to the algorithm moving in a circular
fashion around the optima with the direction of the negative gradient almost
perpendicular (φ = π/2) to the previous update.
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Fig. 5: Inner product, ḡt · d̄t = cos (π − φt), during optimization for both AMoC
and AMoC-N for convex experiments in the paper.
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