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Abstract

We compare a number of data mining and statistical
methods on the drug design problem of modeling molecular
structure-activity relationships. The relationships can be
used to identify active compounds based on their chemical
structures from a large inventory of chemical compounds.

The data set of this application has a highly skewed class

distribution, in which only 2% of the compounds are con-
sidered active. We apply a number of classification methods
to this extremely imbalanced data set and propose to use
different performance measures to evaluate these methods.
We report our findings on the characteristics of the perfor-
mance measures, the effect of using pruning techniques in
this application and a comparison of local learning meth-
ods with global techniques. We also investigate whether re-
ducing the imbalance in the training data by up-sampling or
down-sampling would improve the predictive performance.

1 Introduction

High throughput screening (HTS) is a technique in
which predicting extreme values is more important than pre-
dicting low or mid-ranged values [15]. HTS has been used
in drug discovery to screen large numbers of potential com-
pounds against a biological target. Biotechnology advances,
such as newly developed synthetic methods and better as-
say techniques, make it possible to screen tens of thousands
to hundreds of thousands of compounds at the early stage
of drug design. For example, in the application this pa-
per presents, nearly 30,000 compounds have been assayed
to discover their biological activities for protecting human
cells from HIV infection. However, it is impractical to test
every available compound against every biological target.
Pharmaceutical companies now have of order one million
compounds in their databases, and combinatorial chemistry
can generate similar numbers of new compounds. There-
fore, there is a great need to optimize this high throughput
screening process by developing methods that can identify
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promising compounds from a large chemical inventory on
the basis of a relatively smaller set of tested compounds.
One approach is to use the data from tested compounds to
relate biological activity to molecular descriptors of chem-
ical structures. Discovering this structure-activity relation-
ship helps biologists and chemists make decisions on which
compounds are most likely to be highly active, so that they
can speed up the searching process [17].

Many techniques can be used to discover the structure-
activity relationship based on a set of tested compounds.
For example, Jones-Hertzog et al [8] applied the recur-
sive partitioning technique for building decision trees to
model the structure-activity relationship. King et al [9] ap-
plied an inductive logic programming program to discover
the structure-activity relationship. Neural networks have
also been applied [3]. A major challenge in modeling this
structure-activity relationship is that, although the data set
may contain a large number of tested compounds, active
compounds are often rare. For example, in the data set that
we are working on for discovering a compound’s activity
in protecting human cells from HIV infection, only 2% of
the compounds are active. Therefore, we are facing with
a problem of learning from an extremely imbalanced data
set. Learning with this kind of imbalanced data set presents
problems to learning systems, problems which are not re-
vealed when the systems work on relatively balanced data
sets. Since most inductive learning algorithms assume that
maximizing accuracy on a full range of cases is the goal
[13], these systems exhibit accurate prediction for the ma-
jority class cases, but very poor performance for cases as-
sociated with the low frequency class. A solution to this
problem is to reduce the imbalance in the data set by us-
ing different sampling techniques, such as data reduction
or “down-sampling” techniques that remove only majority
class examples [10] and “up-sampling” techniques that du-
plicate the training examples of the minority class or cre-
ate new examples by corrupting existing ones with artificial
noise [6]. An alternative to balancing the classes is to de-
velop a learning algorithm that is intrinsically insensitive to



class distributionin the training set [12]. An example of this
kind of algorithm is the SHRINK algorithm [11] that finds
only rules that best summarizes the positive examples (of
the small class), but makes use of the information from the
negative examples.

In this paper, we investigate several existing data mining
and statistical methods for modeling the structure-activity
relationship based on an extremely imbalanced data set.
The methods include a decision tree learning method, a rule
induction method, a neural network method, a k-nearest
neighbor method and a few regression methods. Our ob-
jective is as follows. Firsi, we would like to determine how
each of these methods reacts to the extremely imbalanced
class distribution and which of these methods is most ap-
propriate for this kind of learning problem. Second, we
would like to evaluate these methods using different perfor-
mance measures and determine whether there is correlation
between the performance measures. Third, we would like to
investigate whether pruning techniques that are often used
in the decision tree and decision rule learning to avoid over-
fitting would help improve the predictive performance on
imbalanced data sets. Finally, we would like to investigate
whether reducing the imbalance in the training data by up-
sampling or down-sampling would improve performance.

2 The Data Set

The study was performed with a data set of nearly 30,000
compounds obtained from GlaxoSmithKline (GSK). The
data were collected by the National Cancer Institute (NCI)
in an effort to discover new compounds capable of inhibit-
ing the HIV virus. The response variable indicates the
activity status of the compounds as confirmed by the De-
velopmental Therapeutics Program (DTP) AIDS anti-viral
screen which measures how a compound protects human
CEM cells from HIV-1 infection. The activity measure for
each compound has three levels: O (inactive), 1 (moderately
active), and 2 (active). The six descriptor variables were
generated by GlaxoSmithKline chemists and are continuous
variables called BCUT numbers which describe the struc-
ture of the compounds such as their surface area, bounding
patterns, charges, and hydrogen bond donor and acceptor
ability. They were calculated based on the work by Burden
[4], who discovered that the compounds with similar struc-
tures have similar BCUT values.

The data set is very unbalanced. There are 215 active
compounds, 393 moderately active compounds and the rest
(29,204) are inactive. Our initial analysis of the data indi-
cated that the inactives have a very complex distribution in
the space of each pair of the descriptors and the active com-
pounds are located in regions where there are many inactive
ones. Because some of the methods we evaluated were de-
signed to handle a binary response and there are relatively
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few compounds in the two active categories, we combined
the active and moderately active compounds into one group.
As a result, the data set contains 608 active compounds,
which are about 2% of the compounds in the data set, and
the rest are inactive compounds. To evaluate the modeling
methods, the data set is further randomly split into a train-
ing and a test set. The training and test sets are of equal size
and are both comprised of 304 active compounds and 14602
inactive compounds.

3 Performance Measures

Our objective is to evaluate some data mining and sta-
tistical classification methods on the data set. For each
method, we build a classification model based on the train-
ing set and then test the model on the test set. A simple
way to test the model is to classify the compounds in the
test set and collect the classification accuracy as the perfor-
mance measure. However, since it is the active compounds
that are of interest and the active compounds occupy a very
small percentage of the data, accuracy on the entire test set
is not an appropriate performance measure for this appli-
cation. Furthermore, simply classifying compounds is not
sufficient. The domain experts would like the compounds
in the test set to be presented to them in decreasing order
of a prediction score with the highest prediction indicating
the most probably active compound so that the compounds
that are most likely to be active can be assayed in their labs
first. Due to this reason, for each method being evaluated,
we have to find a way to assign a prediction score to a test
case and rank the cases according their scores. To be cost

- effective, it is preferred that a high proportion of the com-

pounds ranked highest are actually active.

To evaluate the predictive performance of this kind, a
popular measure is the hit rate, which is the proportion
of active compounds or “hit” amongst those selected [15].
In this paper, we use three performance measures to eval-
uate the methods. First, we propose to use average hit
rate, which is defined as the average of the hit rates at the
points where active compounds are correctly recognized in
aranked list. The average hit rate has the similar definition
to the performance measure of average precision used in in-
formation retrieval!. The second measure we use is called
hit curves, which depicts the number of active compounds
versus the number of compounds selected from a ranked
list. With a hit curve we would like to show the perfor-
mance on the highest region of a ranked list. Therefore, we
restrict the number of selected compounds to be no more
than 500. The third performance measure we use is ROC

! Finding active compounds from a large collection of compounds is
similar to finding relevant documents from a large collection of documents
in information retrieval. Both tasks have a highly skewed class distribution
and output a ranked list of objects.



curves [14], which depict how the percentage of correctly
recognized active compounds depends on the percentage of
the incorrectly classified inactive compounds. ROC curves
illustrate tradeoffs between true positive rates and false pos-
itive rates with respect to the active compounds. Given a
ranked list, a ROC curve shows the predictive performance
on the whole region of the list.

4 Description of Classification Models

We evaluate the following data mining and statistical
methods for discovering classification models from data.
Since it is necessary to output a ranked list of test exam-
ples in the prediction phase, we also describe the ranking
criterion that we used for each method.

4.1 ELEM2

ELEM2 [1] is a rule induction algorithm that generates
a set of classification rules by selecting attribute-value pairs
from data. The learning strategy used in ELEM2 is a se-
quential covering method, which sequentially learns a sin-
gle conjunctive rule, removes the examples covered by the
rule, then iterates the process until all positive examples of
a class are covered or until no rule can be generated. The
result of the learning process for one class is a disjunctive
set of conjunctive rules. ELEM2 also has an option to use
a post-pruning technique that removes some attribute-value
pairs from the condition part of a rule to avoid over-fitting.
To post-prune a rule, ELEM2 computes a rule quality value
for the rule according to one of the rule quality formu-
las described in [2]. In post-pruning, ELEM2 checks each
attribute-value pair in the rule in the reverse order in which
they were selected to determine if removal of the attribute-
value pair will decrease the rule quality value. If not, the
attribute-value pair is removed and the procedure checks all
the other pairs in the same order again using the new rule
quality value resulting from the removal of that attribute-
value pair to discover whether another attribute-value pair
can be removed. This procedure continues until no pair can
be removed.

The rules generated by ELEM2 can be used to classify
new examples in a test set. To apply ELEM2 to identify
active compounds in our particular application, we design
a ranking procedure that calculates a numerical score for
each test example and ranks the test examples according to
both their predicted classes and their scores. The score is
called ranking score and measures an example’s likelihood
of belonging to a class, e.g., the category of active com-
pounds in our particular application. To define the rank-
ing score of an example e with respect to a class C, we
first compute a matching score between e and a rule » of
C using MSc(e,r) = 2 x Q(r), where n is the number
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of attribute-value pairs that » contains, m is the number of
attribute-value pairs in  that are matched with e, and Q(r)
is the rule quality value of ». The ranking score of e with
respect to C' is defined as

k) k2
RS(e,C) = Z}"ISc(e, ri) — ZMSﬂC(ea ri)s

i=1 Jj=1

where 7; is arule of C, ky is the number of rules of C, r; is
a rule of classes other than C, and k; is the number of this
kind of rules.

The ranking algorithm of ELEM2 ranks the test exam-
ples according to both the predicted class label (produced
by ELEM2’s classification program) for the example and
the ranking score of that example with respect to a specified
class C, e.g., the active compounds. It places test exam-
ples that are classified into the specified class C' in front of
other test examples and ranks the examples in each group in
decreasing order of their ranking scores with respect to C'.

4.2 Classification Trees

We use a Classification and Regression Tree (CART)
program implemented in S [5] to test the performance of de-
cision trees on our data set. Using binary recursive partition,
adecision tree method successively splits the data along co-
ordinate axes of predictors. At each division, the resulting
two subsets of data are as homogeneous as possible with
respect to the response of interest. In S, the splitting cri-
terion is deviance, which measures the homogeneity of the
two subsets. Let p;; denote the probability of one observa-
tion in subset 2 to be in class j and n;; denote the number of
observations that are in subset ¢ and belong to class j. The
deviance of subset ¢ is defined as D; = ~2 Ej n;; log p;;.
The deviance of the subtree generated by the split is defined
as D = Zi D;. The split that minimizes D is chosen. The
default setting in S uses the following two constraints to
stop further splitting the data:

(1) there must be at least 10 observations in a
node; and

(2) the node deviance must be at least 1% of the
root node deviance.

We call the trees generated with this default setting default
trees. A pure tree can be constructed by removing these two
constraints to allow the tree to perfectly adapt to the training
data. In our experiments, we evaluate both kinds of trees on
our data set.

To rank the examples in the test set, we calculate a score
for each terminal node of a tree. A test example is assigned
the score of the terminal node it falls in. Examples in the test
set are ranked according to their assigned scores. To calcu-
late the score for a terminal node in a default tree, we first



calculate the estimated hit rate for the node as p = Pastis,
where ngeeive is the number of active compounds in the
training set that fall in the node and n is the number of com-
pounds falling in the node. To account for uncertainty in p,
we assume a Binomial model for responses in each terminal
node and calculate a 95% one-sided confidence interval or
lower bound, pj, for the true hit rate p. The pj, score is
large if p is large and there are many compounds in a node.
We use the pj, score to rank terminal nodes and test exam-
ples for a default tree. For a pure tree, we rank terminal
nodes and test examples according to the node size, which
is the number of active compounds in the training set that

fall in the node.
4.3 k-Nearest Neighbor

K -nearest neighbor (kNN) classification is a very simple
but powerful algorithm. For each case in the test set, a KNN
method finds & nearest points in the training set according to
a distance measure and assigns a predicted class to the test
case by using a (weighted) vote among the & selected neigh-
bors. In our experiment, k is determined by using leave-one
cross-validation on the training data and Euclidean distance
is used as the distance measure to find & nearest neighbors.
Votes for the active compounds from the & nearest neigh-
bors relative to all the votes can be regarded as the proba-
bility of the test case to be in the class of active compounds.
This probability is used to rank test cases.

4.4 Logistic Regression Model

Logistic Regression Model (LRM) is a special case of
generalized linear models and it is a popular model to han-
dle data with binary response. LRM assumes

lOg (%) :b0+b19§1+b2$2+-n+bnzna (1)

where p denotes the probability that the observed case (rep-
resented by x4, £3, ..., ) is in the category of interest and
b’s are the parameters to be estimated from the training data.
In the prediction phase, the probability, p, that a test case is
in the category of interest can be calculated with the es-
timated b’s. Test cases are then ranked according to their
probabilities of being in this category, which is the category
of active compounds in our application.

4.5 Generalized Additive Model

The Generalized Additive Model (GAM) used in our
study is an extension to the logistic regression model. In
GAM, each predictor z; in (1) is replaced by a smooth func-
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tion, f;(z;), where i = 1, ..., n, as follows:

log (l—ﬁ—};) =bo+ f1 (x1)+f2 (22)+ .o+ fu (20), )
where f1, f2, ... and f,, are smoothing splines which can be
estimated from the training set.

4.6 Neural Networks

A feed-forward neural network [16] with one hidden
layer of 9 nodes is used in our study. It is the simplest but
the most common form of neural networks. The neural net-
work can output an estimated probability that a test case is
in a category of interest. We use this probability to rank test
cases.

4.7 MARS

In-Multivariate Adaptive Regression Splines (MARS), a
multiple regression function is approximated using linear
splines and their tensor products. Detailed description of
MARS can be found in {7].

5 Empirical Comparison of Modeling Meth-
ods

To evaluate the above data modeling methods, we ran-
domly split our data set four times, resulting in four
training-test data splits. The training and test sets in each
split are of equal size and both consist of 304 active and
14602 inactive compounds.

5.1 Results
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Figure 1. Hit Curves from Different Methods

Figure 1 compares the methods using hit curves for one
random training-test data split?. From these hit curves, we

2The curves for three other splits are similar



can observe that default tree, pure tree, ELEM23 and the k-
nearest neighbor method have the lead, followed by MARS
and the neural network method. The worst performance is
given by GAM and LRM.

Average Hit Rate (%)

ELEM2 Default Pure kNN

Tree  Tree

LAM  GAM

Figure 2. Average Hit Rates for the 8 Methods

Figure 2 compares the methods in terms of average hit
rates. The average hit rate for each method is obtained by
averaging the average hit rates on 4 random training-test
data splits. It can be easily observed from the figure that
the two tree methods take the lead, followed by ELEM?2
and kNN, which in turn followed by MARS and the neural
network method. LRM has the worst performance.
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Figure 3. ROC Curves from Different Methods

Figure 3 presents the ROC curves produced by the 8
methods on one random training-test data split!. ROC
curves illustrate the performance on the entire region of a

3ELEM2 has an option for choosing a rule quality formula. The result
presented here is from using the C2 rule quality formula [2].
4 The results on three other random splits are similar.

15

ranked list. The 8 curves cross each other and there is no
single method dominating all the time. However, we can
generally say that at the very beginning, pure tree, default
tree, ELEM2 and kNN are among the best and their curves
overlap, then the kNN method outperforms others and later
the pure tree and GAM pick up the lead. MARS is also a
good method in this comparison even if its top ranking per-
formance displayed in hit curves is not as good. The LRM
method remains the lowest in ROC curves, which is consis-
tent with its ranking in terms of top ranking performance.
Another observation we obtain from these ROC curves is
that default trees are not as good as pure trees, which con-
flicts with observations from many other applications that
smaller trees usually give better performance.

5.2 Discussion

It is obvious that hit curves depict the top ranking per-
formance, while ROC curve illustrate the performance on
the entire region of a ranked list. However, it was not ob-
vious at what region of a ranked list the average hit rate
is good at measuring the performance. By comparing our
results on average hit rates with the results on hit curves,
we observe that the average hit rate actually measures the
top ranking performance. For our data set, we can roughly
say that it measures the performance for the top 200 com-
pounds in a ranked list even if the definition of average hit
rate is based on the entire region. This observation can be
explained by analyzing the definition of average hit rate.
An active compound that ranks higher makes larger contri-
bution to the value of the average hit rate. A low ranking
active compound has a very small weight in the computa-
tion of the average hit rate.

In terms of the modeling methods we compare, we ob-
serve that local methods, including the classification tree
methods, ELEM2 and kNN, which are good at capturing
the local behavior and interactions in the data, are more
successful techniques, outperforming all the other meth-
ods. These local methods are more general, flexible and
make minimal assumptions about the underlying relation-
ships. They are able to focus on very local regions with
concentrations of active compounds. In kNN, strong local
behavior in this data set is also indicated by the fact that an
optimal & is chosen by using cross-validation on the training
data.

Among the other methods we evaluate, LRM is a popular
model for problems with binary response variables. How-
ever, it assumes that the log odd of the probability of active
response, instead of inactive response, can be well approxi-
mated by a linear combination of the BCUT numbers. This
assumption is unrealistic for the data that have only six pre-
dictors and may have a lot of large noises. GAM incorpo-
rates adaptive smoothing (smoothing splines) on -each pre-



dictor into the data model, which results in a better perfor-
mance than LRM. MARS allows not only non-linear effects
within predictors but also some interactions among them.
Feed-forward neural networks can also be seen as a method
to parameterize a fairly general non-linear function [16].
We have observed from our experiments that both MARS
and feed-forward neural networks give better performance
than LRM and GAM on our data set.

6 Pruning vs No-pruning

We noticed from the above results that the pure tree
method is comparable to the default tree method in terms
of average hit rates and hit curves. In terms of ROC curves,
it is obvious that the pure tree outperforms the default tree.
Therefore, we can say that the pure tree performs as well as
or better than the default tree in terms of top ranking per-
formance and it is better than the default tree in terms of
the performance in the entire region of the ranked list. This
finding was a surprise to us because a pure tree perfectly
adapts to the training data and it is usually considered to
be overfitting the data. In many other applications, smaller
trees, rather than overfitting trees, are preferable. A possi-
ble reason for our finding is that conventional criteria used
in learning algorithms, such as misclassification rates, ac-
curacy measurements or deviance, often assume that target
classes have a balanced distribution.

@ Pruning @No-pruning|

Average Hit Rate (%)

WS c2 LS
Formula

Coleman  Prod

Figure 4. Comparison of Pruning with No-
pruning

To further test the results, we conducted experiments
with ELEM2 using different rule quality formulas. A
rule quality formula is used in the post-pruning process of
ELEM?2 to determine whether an attribute-value pair in a
rule should be removed to avoid overfitting. Description of
the rule quality formulas used in ELEM2 can be found in
[2]. Figure 4 shows the average hit rates of ELEM2 using
different rule quality formulas with or without the pruning
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technique®. The results indicate that for most of the rule
quality formulas, such as WS, Prod, Chi, C2 and Coleman,
no-pruning produces better average hit rates than pruning.
Only for formulas MD and LS, pruning is beneficial. How-
ever, these two formulas, even with the pruning option, are
not as competitive as some other formulas on this imbal-
anced data set. The best performances are given by formu-
las Coleman and C2, indicating that Coleman and C2 better
handle the imbalance in the data set and that the pruning
technique is not beneficial when the data is extremely im-
balanced.

7 Balancing the Data

Another objective of this research is to discover whether
reducing the imbalance in the training data would improve
the predictive performance for the 8 modeling methods we
have evaluated. To reduce the imbalance in the training
data, we conducted both up-sampling and down-sampling.
For up-sampling, we created 6 additional training sets by
duplicating the examples of active compounds to increase
the prevalence of active compounds in the training data.
Percentages of active compounds in these 6 training sets are
4%, 8%, 14%, 25%, 40% and 50%, respectively. The orig-
inal distribution of active compounds is 2%. Figure 5 illus-
trates the average hit rates versus the percentage of active
compounds in the training data for the 8 modeling meth-
ods. From the curves we can observe that only for the pure
tree method, balancing the data by up-sampling increases
the performance. However, the increases are small and are
not considered as significant. For other methods, balanc-

. ing the data is not beneficial. The curves for the LRM and

GAM methods are flat, indicating that they are not sensitive
to the changes in the distribution of the data. MARS and
the feed-forward neural network method are sensitive to the
changes. The performance for these two methods can be
increased by up-sampling. But their performance can also
be decreased if the “right” distribution is not chosen. For
the kNN method, the performance is decreasing at the be-
ginning and is later flattened as the percentage of the active
compounds increases. This is because in kNN % is chosen
by using cross-validation and as the active compounds are
being duplicated many times, k is consistently determined
to be 1 because too many duplicated active compounds are
in the training data.

We also conducted experiments with down-sampling for
reducing the imbalance in the data. For down-sampling, we
keep all the active compounds in the training data and ran-
domly select a subset of inactive compounds. We created
13 down-sampled training sets. Each of the training sets
contains n x 304 inactive compounds, where n changes

5The results in the figure are the average over 4 random training-test
data splits.
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Figure 5. Effects of Up-sampling on Average
Hit Rates

from 1,3,5,7,..., until 40. Consequently, the percent-
age of active compounds in the training set changes from
50%, 25%, 16.7%, 12.5%, ..., until 2.4%. In the original
training data, the percentage of active compounds is 2.04%.
Our experimental results for down-sampling is shown in
Figure 6. The horizontal axis represents the percentage of
active compounds in the down-sampled training data. The
left-most point represents the true distribution of the data.
As the percentage of active compounds increases, the size
of training data decreases because of more inactive com-
pounds are removed due to down-sampling. The curves de-
scribe the changes of average hit rates with respect to the
changes in the percentage of the active compounds for the
8 modeling methods. We can observe that all the meth-
ods reach their lowest average hit rates when the data be-
come perfectly balanced (50%). This is because too much
information is lost by reducing the number of inactive com-
pounds to be the same as active compounds. It can also
be observed that LRM and GAM are not sensitive to the
changes in training data since their curves are pretty much
flat. The performance for the kNN method consistently de-
creases as the more and more inactive compounds are re-
moved from the training data. For ELEM2, none of the
down-sampled training sets improves the performance. For
each of the tree methods, small improvement can be seen
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Figure 6. Effects of Down-sampling on Aver-
age Hit Rates

at two points. But, generally, their performance decreases.
For MARS and the neural network method, down-sampling
can help, but it can also decrease the performance compared
to using the original training set.

8 Conclusions

We have compared a number of classification meth-
ods on an extremely imbalanced data set for modeling the
structure-activity relationship to identify active compounds
for drug discovery. Among the methods we evaluated, lo-
cal methods, such as the tree methods, the ELEM2 rule
induction method and the kNN method, which are able to
identify local behaviors and interactions, outperform other
methods in terms of measures for the top ranking perfor-
mance. Among the local methods, the pure tree method is
robust in that it performs well on all the four data splits and
that it does not only outperform others in the top region,
but is also among the best methods evaluated on the entire
region of the ranked list.

The pure tree’s outstanding performance over the default
tree indicates that the pre-pruning technique used in the de-
fault tree learning to avoid overfitting the data is not ben-
eficial. This result is consistent with the results obtained
from ELEM?2 that uses post-pruning techniques to prevent
the rules from overfitting the data. We found that for most
of the rule quality formulas tested, especially those that
give the best performance in the imbalanced data set, post-
pruning does not improve the predictive performance. This
conclusion needs to be further tested on other imbalanced
data sets to determine whether the result is unique for our
application. :

We also found in this research that reducing the imbal-
ance in the training data by either up-sampling or down-
sampling does not increase the predictive performance for
most of the evaluated methods. Only for MARS and the



neural network method, the performance can be improved
at certain points of up-sampling or down-sampling. At
other points, the performance can be decreased. There-
fore, careful selection of up-sampling or down-sampling
points in terms of percentage of active compounds in the
training data is necessary for using the up-sampling or
down-sampling technique with MARS and neural networks.
Cross-validation may be used in this selection.

In terms of performance measures used in our evalua-
tion, ROC curves are good at depicting the performance in
the entire region of a ranked list. Both hit curves and av-
erage hit rates are good at measuring the top ranking per-
formance, which is considered to be important for our ap-
plication. A benefit of using average hit rates is that it is
easy to rank the methods being compared, while hit curves
may cross each other multiple times, which makes it hard
to determine which method is actually better overall. The
measure of average hit rate can also be easily incorporated
into a learning algorithm’as a criterion for doing some sort
of selection. For example, we may use the average hit rate
as a criterion in cross-validation for determining an optimal
tree size in the tree post-pruning process. This is one of the
items we will work on in the future. We expect that a “right”
criterion in pruning can lead to better performance.
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