
Objective and Subjective Algorithms for Grouping Association Rules

Aijun An, Shakil Khan
Department of Computer Science

York University
Toronto, Ontario M3J 1P3 Canada

aan,skhan@cs.yorku.ca

Xiangji Huang
School of Analytic Studies and

Information Technology, York University
Toronto, Ontario M3J 1P3 Canada

jhuang@cs.yorku.ca

Abstract

We propose two algorithms for grouping and summariz-
ing association rules. The first algorithm recursively groups
rules according to the structure of the rules and generates
a tree of clusters as a result. The second algorithm groups
the rules according to the semantic distance between the
rules by making use of an autometically tagged semantic
tree-structured network of items. We provide a case study in
which the proposed algorithms are evaluated. The results
show that our grouping methods are effective and produce
good grouping results.

1 Introduction

A common problem in association rule mining is that a
large number of rules are often generated from the database,
which makes it difficult for human users to analyze and
make use of the rules. Solutions have been proposed to
overcome this problem, which include constraint-based data
mining, post-pruning rules, and grouping rules. In this pa-
per, we focus on grouping association rules. Several stud-
ies have been conducted to group association rules. One of
approaches, presented in [3], uses heuristic methods based
on geometric properties of two-dimensional grids to cluster
discovered rules in the two-dimensional space. The prob-
lem of the approach is that it is limited to only the rules
with two fixed attributes in their antecedents. Another ap-
proach presented in [6] lifts the two-dimensional restriction,
but grouping is only based on numeric attributes. A third
approach was proposed in [5], in which rules are grouped
into clusters according to a distance measure between two
association rules. The distance measure is defined as the
number of transactions on which the two rules differ. A
limitation of this approach is that rules that belong to the
same cluster may have substantially different structures and
thus it is difficult to describe the rule cluster to the user.
Another similarity-based approach was described in [1], in
which the similarity measure is based on attribute hierar-

chies. The attribute hierarchy is a tree structure providedby
the human expert. By specifying a rule aggregation level,
the rules are generalized using the non-leaf nodes at the ag-
gregation level, and the rules with the same aggregated rule
are grouped together. The benefit of this approach is that
each group can be described by the aggregated rule. How-
ever, this approach requires the intensive user interaction
during the grouping process. The user must specify the ag-
gregation level. When the attribute hierarchy is huge, the
user may not have a clear idea about what would be the ap-
propriate aggregation level.

We propose two algorithms for grouping association
rules. The first algorithm, called the Objective Grouping
algorithm (theOG algorithm), groups the rules according
to the syntactic structure of the rules without using any do-
main knowledge. The second algorithm, referred to as the
Subjective Grouping algorithm (theSGalgorithm), incor-
porates domain knowledge and groups the rules according
to the semantic information of the objects in the rules. Both
algorithms group similar rules together and provide users
with a high-level overview of the rules. In addition, the
two algorithms require little intervention from the user dur-
ing the rule grouping process and can be applied to asso-
ciation rules that are derived from a database containing a
large number of different items or attributes.

2 The Objective Grouping Algorithm

Let I be a set of all items in a domain andD be a set
of transactions overI. A transaction is a subset ofI. The
association rule is an implication of the formA → B, where
A ⊆ I, B ⊆ I, andA ∩ B = ∅. A is called the antecedent
of the rule andB is called the consequent of the rule. Let
R be a set of association rules overI. Let a, b ∈ I andρ =
{a} → {b}. Note thatρ may or may not be inR. Thecover
of ρ in R, coverR(ρ), is defined as1 coverR(ρ) = {r ∈
R|r = A → B, a ∈ A, b ∈ B}. Intuitively, coverR(ρ)

1Our definitions ofcoverandseed ruleare recast from the definitions
of coverage listandancestor rulein [4].

1

contains all the rules inR that havea in their antecedent
andb in their consequent. Again, note thatρ 6∈ coverR(ρ)
whenρ 6∈ R. Theseed ruleof the cover ofρ in R is defined
to beρ. Thesize of the cover ofρ in R, sizeR(ρ), is the
number of rules incoverR(ρ).

The basic idea of the OG algorithm is to recursively
group rules with common items in their antecedents and
consequents until some criteria are satisfied. The result of
the algorithm is a tree of clusters, in which each leaf node
is a rule and each non-leaf node is a cluster that contains
all the rules in its children. In addition, each cluster has a
unique label or group name, which is the ancestor rule of
the cluster. For example, given a set of association rules
{ab → cd, bcd → ae, abe → d, ac → d, b → a, d → c},
the OG algorithm can generate a tree of clusters shown in
Figure 1, where non-leaf nodes denote clusters.

Figure 1. Sample Output of the OG Algorithm

The OG algorithm is presented in Figure 2. It takes four
inputs: I, R, threshold anddepth, which are explained
in the figure. Thedepth parameter should be1 when the
algorithm is first called. The algorithm works as follows.
As long as the number of ungrouped rules is greater than
a certain predefined limit2, it tries to group the rules in the
following manner. First, it searches for a seed ruleρ (with
single item antecedent and single item consequent) that has
thedepth’th largest size of cover inR by enumerating over
all possible combinations. Here, rather than considering the
largest cover, we search for thedepth’th largest cover to
avoid grouping items using the same seed rule over and over
again, in a recursive call. The reason behind this is that we
have already classified the largest cover into one group in
one of the upper levels of recursion. After a seed ruleρ is
selected, the cover ofρ in R is computed and all the rules in
the cover is grouped into a single cluster, labeled as group
ρ. Next, if coverR(ρ) has more thanthreshold elements,
we recursively group them. To reduce the complexity of
the process, when we recursively call the OG algorithm, we
reduce the size of the itemsetI by keeping only the items
that appear incoverR(ρ). For the rest of the rules inR,
i.e., forR − coverR(ρ), we repeat this procedure until the

2In the algorithm, we reuse thethreshold to define this limit. Another
threshold can be used for this purpose.

Algorithm: Objective Grouping
Input: I = a set of items;

R = a set of association rules overI;
threshold = the maximum number of rules in a group;
depth = the depth of recursive call.

Output: Output=the grouped version ofR.
Begin

1. Output← ∅;

2. While |R| > threshold Begin

3. For i = 1 to |I|

4. For j = 1 to |I|

5. counti,j = 0;

6. For i = 1 to |R|

7. For each itema in the antecedent

8. For each itemb in the consequent

9. counta,b ← counta,b + 1;

10. If thedepth’th largestcounta,b = 0, Return R;

11. (x, y)← the index of thedepth’th largestcounta,b

12. ρ← rule{x} → {y};

13. ComputecoverR(ρ);

14. Group all the rules incoverR(ρ) with label “ρ”

15. If |coverR(ρ)| > threshold Begin

16. Iρ ← all the items appearing incoverR(ρ);

17. coverR(ρ)← Objective Grouping(Iρ, coverρ,

threshold, depth + 1);

18. End

19. Output← Output ∪ coverR(ρ);

20. R← R − coverR(ρ);

21. End

22. GroupR with label ”other”;

23. Output← Output ∪ other;

24. Return Output;

End

Figure 2. The Objective Grouping Algorithm

number of leftover rules is less thanthreshold. Finally,
we group and label these leftovers as the “other” group and
terminate the procedure.

3 The Subjective Grouping Algorithm

The SG algorithm makes use of domain knowledge. The
domain knowledge it uses is a tagged semantic network,
which is a special type of taxonomy oris-a-hierarchy. The
semantic network is provided by domain experts and has
the following properties. (1) The taxonomy contains one or
more trees. Each node in a tree represents an object or item.
The upper level nodes represent generalization of their chil-
dren. (2) Both leaf and non-leaf nodes of the taxonomy
can be present in the antecedent and consequent of a rule.
(3) Each node of the taxonomy is associated with a pair of
numbers, which represents the relative position of the node

2

in the taxonomy. We call this pair of numbers theRelative
Semantic Position(RSP) of the node. Generally, if two ob-
jects are closer to each other in terms of their semantic dis-
tance, their RSPs are also closer and vice versa. RSPs can
be specified by domain experts. But to reduce the degree of
user intervention, we assign a RSP to each node automati-
cally as follows. We define the RSP of a node to consist of
two numbers, denoted as(hpos, vpos), wherehpos repre-
sents the horizontal position of the node in the tree andvpos

represents the vertical position of the node in the tree. We
use the level of the node in the tree to represent the vertical
position of the node. To assign ahpos to each node, we first
create a completely balanced tree by adding artificial nodes
to the tree, do an in-order traversal of the balanced tree, and
then remove the artificial nodes. While performing in-order
traversal of the tree, we assign gradually monotonically in-
creasing integers to the nodes of the tree as theirhpos val-
ues. Therefore, thehpos value of a node is the position of
the node in the balanced tree’s in-order traversal sequence.
Figure 3 illustrates a tagged unbalanced tree with its RSPs
assigned by this method. The benefit of this method for as-
signing RSPs is that the tree can be easily visualized using
the RSP values in a two dimensional space. If the seman-
tic network contains multiple trees, we can either make it
a single tree by adding a root node on top of all the trees,
or assign RSPs for each tree individually but with different
value ranges.

Figure 3. A Tagged Tree with RSP Values

Having assigned a RSP to each node of the taxonomy,
we use RSPs to represent the objects or items in each asso-
ciation rule. We then calculate the average RSP of all the
elements in a rule’s antecedent and the average RSP of all
the elements in the rule’s consequent. The rule is then rep-
resented by two mean RSPs. Since each of the two mean
RSPs corresponds to a point in a two-dimensional space,
the rule can be further represented by a directed line seg-
ment (pointing from the antecedent mean to the consequent
mean) in the two dimensional space. For example, con-
sider the following rule described by the RSPs of its ob-
jects:{(2, 3), (4, 2)} → {(9, 4), (10, 3)}. We can represent
the rule using the mean RSPs of its antecedent and conse-
quent as{3, 2.5} → {(9.5, 3.5)} and further depict the rule
using a directed line segment, as shown in Figure 4.

Figure 4. A Rule Represented by a Line Seg-
ment in the Object Taxonomy Space

Once the rules are represented using line segments,
the problem of grouping association rules is converted
to the problem of clustering line segments. We can
use a standard clustering algorithm to cluster the line
segments, and modify the distance function used in the
clustering algorithm to measure the distance between
two line segments. Our distance function is defined as
Distance(s1, s2) = 1 − cos(s1, s2) + NDist(c1, c2) +
NDiff(length(s1), length(s2)), wheres1 ands2 are two
line segments,cos(s1, s2) takes the cosine of the angle be-
tweens1 ands2, c1 andc2 are the center points ofs1 and
s2 respectively,NDist represents normalized distance and
NDiff denotes the normalized difference, andlength(x)
computes the length of segmentx.

The SG algorithm is presented in Figure 5. It groups
together rules with similar antecedents and similar conse-
quents, and labels each group by the mean RSPs of the rules
in the group, which indicate the position of the group in the
semantic network. The algorithm can generate a hierarchy
of clusters if a hierarchical clustering method is used for
grouping line segments.

4 A Case Study

We have applied the OG and SG algorithms to group as-
sociation rules discovered in a Web mining application. The
data set used in the application is the Web log data produced
by Livelink3, which provides automatic management and
retrieval of a wide variety of information objects. From the
data set, a large number of rules were generated. We first
ranked the rules according to an interestingness measure [2]
and then selected the top 100 rules for use in our evaluation.
In the evaluation, we asked our domain expert to group the
100 rules and then compared the results from the OG and
SG algorithms with the expert grouping. Our domain expert

3Livelink is a commercial product of Open Text Corporation
(http://www.opentext.com).

3

Algorithm: Subjective Grouping
Input: a tagged tree or forest;

a set of mined association rulesR;
Output: a set of grouped association rules
Begin

1. For each rule inR Begin

2. Replace each item in the rule with its RSP;

3. Compute the mean of RSPs of all the items in the antecedent
of the rule and the mean of RSPs of all the items in the consequent;

4. Add the two means and the rule id as a record in table T

5. End

6. Call a clustering algorithm to group the line segments (represented
by the two means) inT , using our distance function;

7. Label each group with the mean of RSPs in the antecedents and the
mean of RSPs in the consequents of the rules in the group;

8. Return the grouped association rules;

End

Figure 5. The Subjective Grouping Algorithm

Group size 1 2 3 4 5 20 25 26
Num. of groups 4 4 1 1 2 1 1 1

Table 1. Group Size Distribution from Experts

groups the 100 rules into 15 groups. The distribution of the
group size is shown in Table 1. The results of OG and SG
are shown in Table 2. There are two runs of the OG algo-
rithm (OG-1 and OG-2), using two different thresholds (i.e.,
the maximum numbers of the rules in a cluster). Each run
of OG produces a tree of clusters. The table shows the num-
ber of levels of the cluster tree, the number of clusters at the
lowest non-leaf level (shown in the table as No. of clusters),
the number of lowest non-leaf level clusters that are com-
pletely the same as a cluster from the expert (No. of compl.
cor. clusters) and the grouping accuracy. The grouping ac-
curacy is calculated as follows. For each pair of rules, we
know whether they should belong to the same group based
on the grouping result from the domain expert. If two rules
that should belong to the same group are clustered into the
same group or if two rules that should not belong to the
same group are clustered into different groups, we call it a
“match”; otherwise, it is a mis-match. The grouping accu-
racy is defined asaccuracy = Number of matches

Total number of rule pairs
.

The information objects in the Livelink environment are
organized into a structure that contains over 2000 trees. To

Run Threshold No. of No. of No. of compl. Accuracy
levels clusters cor. clusters

OG-1 26 3 11 6 81.2%
OG-2 20 4 13 4 71.5%

SG 15 9 15 12 93.7%

Table 2. Results of the OG and SG Algorithm

run the SG algorithm, we first tagged the trees with our
automatic tagging method. We then used a hierarchical
agglomerative clustering algorithm to cluster the line seg-
ments within the SG program. The program generates a
dendrogram that shows the levels of nested merging. When
we evaluate the performance, we cut the dendrogram at the
level where there are 15 clusters, and based on these clus-
ters we calculate the grouping accuracy. Due to the use of
hierarchical clustering, the result of grouping is also a tree
of clusters. The number of levels shown in Table 2 for the
SG run is the level of the tree produced on top of the 15
clusters. In general, the program can dok-way clustering.
Here we setk to be 15, which is the actual number of groups
produced by the expert. From Table 2 we can see that the
SG algorithm produces more accurate results than the OG
algorithm.

5 Conclusions

We have presented two new algorithms for grouping a
large number of (interesting) association rules. We also
presented a case study in which we applied the two algo-
rithms to group a set of interesting association rules discov-
ered from the Livelink log data. Our experiment shows that
both methods are effective and produce good grouping re-
sult with respect to the expert grouping result.

Acknowledgment
We would like to thank Open Text Corporation and CITO

for supporting this research, and Mr. Miao Wen for his help
in implementing the algorithms presented in the paper.

References

[1] Adomavicius, G. and Tuzhilin, A. ”Expert-driven vali-
dation of rule-based user models in personalization ap-
plications”, Data Mining and Knowledge Discovery,
vol.5, nos.1/2, January/April 2001.

[2] Huang, X., An, A., Cercone, N and Promhouse,
G. ”Discovery of Interesting Association Rules from
Livelink Web Log data”,Proc. of the IEEE Int. Conf. on
Data Mining (ICDM’02), Maebashi City, Japan, 2002.

[3] Lent, B., Swami, A.N., and Widom, J. ”Clustering As-
sociation Rules”,Proc. of ICDE, 1997.

[4] Sahar, S., ”Interestingness via What is not Interesting”,
Proceedings of KDD’99, 1999, pp.332-336.

[5] Toivonen, H., Klemettinen, M., Ronkainen, P., Hato-
nen, K. and Mannila, H. ”Pruning and grouping discov-
ered association rules”,Proc. of KDD’95.

[6] Wang, K., Tay, S.H.W. and Liu, B. ”Interestingness-
based interval merger for numeric association rules”,
Proc. of KDD’98.

4

