
Mining and Modeling Database User Access Patterns

Qingsong Yao, Aijun An, and Xiangji Huang�

Department of Computer Science and Engineering, York University, Toronto, M3J 1P3 ,Canada
{qingsong, aan}@cs.yorku.ca, jhuang@yorku.ca

Abstract. We present our approach to mining and modeling the behavior of data-
base users. In particular, we propose graphic models to capture the database user’s
dynamic behavior and focus on applying data mining techniques to the problem
of mining and modeling database user behaviors from database trace logs. The
experimental results show that our approach can discover and model user behav-
iors successfully.

1 Introduction

Workload analysis has played an important role in optimizing the performance of data-
base systems. While most work on database workload analysis focuses on providing sta-
tistical summaries and run-time behavior on the physical resource level of the database
system, it has been brought into attention that analysis of task-oriented user sessions
provides useful insight into the query behavior of the database users [7,8]. A session
is a sequence of queries issued by a user (or an application) to achieve a certain task.
It consists of one or more database transactions, which are in turn a sequence of oper-
ations performed as a logical unit of work. Analysis of sessions allows us to discover
high-level patterns that stem from the structure of the task the user is solving.

In this paper, we first describe our approach to modeling database user behaviors. We
use the concept of user access event and user access graph to represent the database
queries and the dynamic relationship among the queries. Then, we describe how we
apply data mining techniques to mine database users’ access patterns from database
traces. Our contributions in this paper are summarized as follows. First, we present a
complete process for mining user access patterns from database trace logs, including
data preprocessing, session identification, session clustering and the generation of user
access graphs. Second, we present the use of Markov models to build the user access
graphs, and provide experimental results showing that the discovered user access graphs
can model the database user behavior well.

2 User Access Graph

The SQL queries submitted by a database user are not random. They follow business
rules or logics. We use user access event and user access graph to represent the query

� This work is supported by Communications and Information Technology Ontario (CITO) and
the Natural Sciences and Engineering Research Council of Canada (NSERC).

F. Esposito et al. (Eds.): ISMIS 2006, LNAI 4203, pp. 493–503, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

494 Q. Yao, A. An, and X. Huang

 P1: Login customer.

 P2: Retrieve customer’s profile.

 P3: Retrieve treatment history .

 P4: Retrieve treatment schedule.

 P5: Logout customer.

User access graph P: (g_cid,g_date)

v30: (select count(t_id) from treatment where customer_id = %, g_cid)

v31: (select t_id from treatment where customer_id = %, g_cid)

v32: (select t_date from treatment where customer_id = %, g_cid)

v33: (select * from t_details where treatment_id = %, l_tid)

v34: (select card_name from t_details t1, member_card t2 where

 t1.t_id = % and t1.card_id =t2.card_id, g_tid)

action for v33: g_tid = l_tid

User access graph P3: (g_cid, g_date, g_tid)

0.9

0.
8

0.2

1.0

1.
0

P1 P2

P4

P3

P5

1.0 0.6 1.0

v30(g_cid) v31(g_cid) v32(g_cid) v33(g_tid) v34(g_tid)

0.7

Start

node

Node

End

node

0.4

Fig. 1. An example of user access graphs

Table 1. An instance of treatment-history-retrieving procedure

ID Query Business meaning
q30 select count(t id) from treatment where customer id = ’c101’ get customer c101’s treatment count
q31 select t id from treatment where customer id = ’c101’ get a list of treatment id
q32 select t date from treatment where customer id = ’c101’ get a list of treatment date.
q33 select * from treatment details where treatment id = ’t202’ get the details of one treatment
q34 select * from treatment payment where treatment id = ’t202’ get the payment information of one treatment

format and the query execution order, respectively. Given an SQL query, we transform
it into two parts: an SQL template and a set of parameters. We treat each data value
embedded in the query as a parameter, and the SQL template is obtained by replacing
each data value with a wildcard character (%). In many situations, the SQL queries
submitted by a user have the same SQL template and are only different in data values.
In this paper, we use a user access event to represent queries with similar format. A
user access event contains an SQL template and a set of parameters. For example, the
SQL query “select name from customer where id =’c101’ ” can be represented by event
(“select name from customer where id =’%’ ”, g cid), where g cid is a parameter.

Given a set of SQL query sequences that have similar formats and execution orders,
we use a user access graph to represent the query execution order. A user access graph
is a directed graph that has one start node and one or more end nodes. Each node in the
graph is a user access event or a user access graph. Each node vi has a support value
ρvi , which is the occurrence frequency within the set of user sessions, and an edge is
represented by ek : (vi, vj , σvi→vj), where σvi→vj is the probability of vj following vi,
which is called the confidence of the edge. There are two types of user access graphs
depending on the granularity of the nodes. The first type is called the basic user access
graph, whose nodes represent only events. The second type is a high level user access
graph, in which each node is represented by a basic user access graph. A high level user
access graph is used to describe the execution orders among sessions that are performed
by the same user. For example, in a client application, there is a patient-information
model that helps an employee to retrieve a patient’s treatment history and treatment
schedule. When a user logs in, the corresponding profile is retrieved. Then he/she can
either retrieve the treatment history information or treatment schedule. Figure 1 shows
two user access graphs for the patient-information model. Graph P, illustrated on the
left side, is a high-level user access graph that describes the execution orders of five

Mining and Modeling Database User Access Patterns 495

sub-models. 80% of the users retrieve treatment history information (since σP2→P3 =
0.8). Graph P3, illustrated on the right side, is a basic user access graph that represents
the treatment-history retrieval sub-model. Table 1 shows an instance of the treatment-
history sub-model that contains four consecutive SQL queries.

A parameter in an event can be a constant, a dependent variable or an independent
variable. The value of a constant parameter cannot be changed by any of the events in
the user access graph. An independent variable can take different values and its value
does not depend on any other variable or constant in the graph. The value of a dependent
variable can be changed by an event and its value depends on some other variables in
the graph. For example, g cid is a constant parameter in the user access graph P3
on the right side of Figure 1, since its value does not change by any of the events
on the graph. g tid in event v34 is a dependent variable because its value is set by
event v33 to be the value of parameter l tid in v33, which is an independent variable.
From Table 1, we observe that query q34 can not be anticipated until query q33 is
submitted. Thus, the corresponding user access event v34 is determined by v33. We
call events whose parameters are not independent variables determined events since the
corresponding queries are known before they are submitted. Other events are called
undetermined events. For example, event v33 is undetermined event, and v31, v32, and
v34 are determined event. A determined event can be result-determined by the results
of other events, parameter-determined by the parameters of other events, or it only
depends on constants or global constant which is called a graph-determined event. A
graph-determined event does not depend on any other events. The difference between
an undetermined event and a result-determined event is that the parameters of the latter
can be derived from query result. For example, v31, v32 are graph-determined event,
and v34 is parameter-determined by v33.

3 Discovering User Access Graphs

Our objective is to mine user access graphs from database traces. The procedure of
mining user access graphs includes the following steps. First, database traces are col-
lected and preprocessed, in which noisy and irrelevant data are removed and the log
entry is transformed to a meaningful format. Second, every SQL query in the traces
is transformed into an SQL template and a set of parameters. We treat a data value in
a given SQL query as a parameter, and the SQL template can be obtained by replac-
ing each parameter in the query with a wildcard character ’%’. A user access event is
assigned to each SQL template to represent a set of similar queries. By replacing the
SQL statements in the log entry with the corresponding user access events, we obtain
sequences of user access events, referred to as event sequences. In the third step, we ap-
ply a session identification method to detect session boundaries from an event sequence
which contains multiple sessions submitted sequentially [3,10]. After session instances
are identified, we further group them into session classes using a clustering method de-
scribed in [9]. Each session class contains a set of session instances. Finally, for each
session class, a user access graph is built. In the next section, we describe the last step
that builds a user access graph from a set of session instances of the same class.

496 Q. Yao, A. An, and X. Huang

4 Modeling Database User Sessions

A session class g contains a set of session instances, {s1, s2, ..., sn}. Each session in-
stance is a sequence of requests. The procedure of modeling session classes contains
three steps. First, we ignore the relationships among parameters in the requests and
consider the request execution order only. In this step, we use Markov models to build
the structures of the basic user access graphs, i.e., the nodes and the edges of the graphs,
where nodes represent user access events. Second, we find the relationships between the
parameters in use access events and introduce variables/actions to the graphs. Finally, to
build a high-level user access graph, we replace each session instance si with the corre-
sponding session class, and obtain a collection of session class sequences, one for each
user. The idea of building low-level user access graphs can be used to build high-level
user access graphs.

4.1 User Access Graph Generation with Markov Model

Let X1, X2,Xn, ... be a sequence of random variables taking values from a finite
set of values S = {x1, x2, ..., xn}. The random variables are said to form a kth-order
Markov chain model if

P (Xi|X1, X2, ..., Xi−1) = P (Xi|Xi−k, ..., Xi−2, Xi−1), (1)

for all values of i. In other words, the current variable at time i depends on previous k
variables. We can think of the values of Xi as states, and the Markov model as a finite
state process with transitions between states specified by probabilities P (xi|xi−k, ...,
xi−2, xi−1). The probabilities can be represented by an nk × n matrix. k is called
the order of the model. A kth-order Markov model can always be converted into an
equivalent first-order Markov model. We can introduce random variables as Zi

.=
Xi−k+1, Xi−k+2, ...Xi, and the Z process forms a first-order Markov model [4].

A zero-order Markov model makes prediction based on the action reference statistics,
and a first-order Markov model makes predictions based on the last action performed
by the user. In general, zero-order Markov model and first-order Markov model have
limited success in representing the dynamic user behavior since these models do not
look far into the past. A kth-order Markov model make predictions by looking at the
last k actions performed by the user, which lead to a state-space that contains all possible
sequences of k actions. The large number of possible states leads to a large transition
probability matrix.

To build a user access graph for each session class, we generate a higher-order
Markov model1 from a group of sessions. We treat each state of the Markov model
as a node in the user access graph, and each state transition corresponds to an edge in
the graph. Thus, the Markov state transition diagrams describe the structure of a user ac-
cess graph. The procedure for building a Markov model is straightforward. We first scan

1 Strictly speaking, the model used is first-order Markov models, where every state is a sequence
of k requests. But since it is transformed from a kth-order Markov in which every request
corresponds to a state, it is equivalent to a higher-order Markov model.

Mining and Modeling Database User Access Patterns 497

all session instances once, generate the possible states and the state transition probabil-
ities. Once a session instance s =< r1, ..., rn > is retrieved, we add a special request
”start” at the beginning of s, and s forms totally n+1 states: (start), (start, r1),...,
(rn−k, ..., rn). The state frequency and state transition frequency are updated corre-
spondingly. In the second step, the states and state transitions are pruned according to
the state support threshold (i.e., the minimal support value for the node) and the con-
fidence threshold (i.e., the minimal confidence value for the edge). We refer to such
models as the pruned Markov models. A corresponding state transition diagram can
also be easily constructed from the transition matrix. By using pruned Markov models,
the number of states and the number of state transitions are reduced.

S1 S2

S5

Freq S1 S2 S3 S4 S5

S2 4 0 0 4 0 0

S3 6 0 0 0 2 2

S4 2 0 0 1 0 0

S5 2 0 0 1 0 0

S1 4 0 4 0 0 0

S1: (start), S2: (a), S3: (b),

S4: (c), S5: (d),

S31.0 1.0

S1 S2

S7

Freq S1 S2 S3 S4 S5

S2 4 0 0 4 0 0

S3 4 0 0 0 2 2

S4 2 0 0 0 0 0

S5 2 0 0 0 0 0

S6 1 0 0 0 0 0

S1 4 0 4 0 0 0

S6

0

0

0

1

0

0

S7 1 0 0 0 0 0 0

S7

0

0

0

0

1

0

0

S1: (start), S2: (start, a), S3: (a,b), S4: (b,c)

S5: (b,d), S6: (c,b), S7:(d,b),

S31.0 1.0

0.
50

0.50

0.5

0.5

First Order Markov Model Second Order Markov Model

start a b

start a b

c

d

c

cd

d0.
5
0

0
.3
3

0.
50

0
.3
3

S4

S6

S5

S4

Fig. 2. First-order and second-order pruned-Markov Model

For example, given four session instances < a, b, c >, < a, b, c, b >, < a, b, d >,
< a, b, d, b >, the first-order and second-order pruned-Markov models and their cor-
responding transition diagrams are illustrated in Figure 2. The confidence threshold is
0.33 and the support count threshold is 1. We observe that first-order model has fewer
states than the second-order model, but it cannot distinguish the two requests of b in
session < a, b, d, b > and < a, b, c, b >. We can also observe that the number of states
in a pruned second-order models is not large (compared with 43 = 64 in the un-pruned
model), and it can model the dynamic behavior of the session class well.

4.2 Finding Relationship Between Nodes

The relationship discovery problem is defined as follows. Given a user access graph
Gs and a set s of sessions {s1, ..., sn} belonging to it, find the relationships between
the node parameters in Gs, and introduce constants, variables and edge actions into G
according to the relationships. In this step, each request in a session is an SQL query
and can be represented by using an user access event and a set of values. Each data
value corresponds to a parameter of the event. Meanwhile, each request can be mapped

498 Q. Yao, A. An, and X. Huang

into a node in the user access graph. The relationships between node parameters can be
discovered by analyzing the data values between the requests.

We assume that all parameters in the nodes of G make a virtual relation R, where
each parameter is one attribute of R. Each session si, which contains a sequence of
queries, corresponds to a tuple of R. The data values in all the queries in si are the
attribute values of that tuple. Therefore, the set s of sessions make an instance of relation
R, referred to as r. Thus, the problem of finding parameter relationships of a user access
graph Gs with sessions s becomes the problem of finding functional dependencies and
dependency functions in an instance r of relation R.

v30: (select count(t_id) from treatment where c_id = %, col30_1)

v31: (select t_id from treatment where c_id = %, col31_1)

v32: (select t_id from treatment where c_id = % and status=%, col32_1, col32_2)

v33: (select * from treatment_details where t_id = %, col33_1)

v34: (select * from payment_details where t_id = %, col34_1)

1.0 0.6 1.0

v30(col30_1) v31(col31_1) v32(col32_1,col32_2) v33(col33_1) v34(col34_1)

0.7

0.4

Fig. 3. Original user access graphs

Suppose a user access graph listed in Figure 3 is obtained. The graph contains five
user access events where each event contains a set of parameters. we first assign a
unique name to each parameter. The corresponding virtual relation contains six at-
tributes, referred to as col30 1, co31 1, col32 1, col32 2, col33 1, col34 1, respectively.
Table 1 shows a session that contains five consecutive queries. The corresponding tuple
of R is illustrated in Table 2, which is obtained by extracting the data values from the
queries, and mapping them to the corresponding attributes.

Table 2. A record of relation R

col30 1 col31 1 col32 1 col32 2 col33 1 col34 1

’c101’ ’c101’ ’c101’ ’1’ ’t202’ ’t202’

From the virtual relation instance, we can find the functional dependencies. The pa-
rameter relationship discovery procedure usually contains the following steps:

1. Virtual relation and relation instance generation. In this step, virtual relation R and
relation instance r are generated from sessions s and user access graph Gs.

2. Functional dependency inference. In this step, functional dependencies are inferred
from r by using a functional dependency inference algorithm. Two kinds of special
dependencies, {→ Y }, and {X ↔ Y }, are two common cases in our inference
problem, which can be found in an efficient way. Dependency {→ Y } means that
the value of Y is a constant and will not change. It can be discovered by examin-
ing the cardinality of Y , which is the number of distinct values of attribute Y in
the relational instance. Dependency {X ↔ Y } means that X and Y agree on all
possible values.

Mining and Modeling Database User Access Patterns 499

3. Dependency function discovery. In this step, dependency functions are discovered
from relation instance r. A dependency function, for a given functional dependency
X → Y , can help to obtain a value of Y by giving the value of X . When X and Y
take numeric values, we use regression analysis to find a function. When the target
attribute Y is categorical, we can treat the relation instance r as the training data,
and each tuple in r has a class label y that is the corresponding value of attribute Y.
Thus, a set of classification rules can be obtained from the training data. The classi-
fication rules can be used to describe the relationship among query parameters, and
can be viewed as the dependency functions.

4. Graph variable and edge action introduction. In this step, graph variables and edge
actions are introduced according to the dependencies and functions discovered in
step 2 and 3.

5 Experimental Results

We evaluated our modeling method on a clinic OLTP application. The clinic is a private
physiotherapy clinic located in Toronto. It has five branches across the city. It provides
services such as joint and spinal manipulation and mobilization, post-operative reha-
bilitation, personal exercise programs and exercise classes, massage and acupuncture.
The client program consists of several models or components. Each model consists of
sequences of SQL statements, and the query execution order is controlled by the busi-
ness logics embedded in the model. The execution of these models in an instance of
the client program also has certain rules. Each day, the client applications installed in
the branches make connections to the center database server, which is Microsoft SQL
Server 7.0. In each connection, a user may perform one or more tasks, such as checking
in patients, making appointments, displaying treatment schedules, explaining treatment
procedures and selling products. The trace file is collected by using Microsoft SQL Pro-
filer 2. The SQL Profiler can monitor all events that occur in the SQL Server database,
and a user can define the events to be monitored manually. We use the SQL Profiler to
collect all SQL queries submitted by the client application within a period of observa-
tion time. The database trace log (400M bytes) contains 81,417 events belonging to 9
different applications,such as front-end sales, daily report, monthly report, data backup,
and system administration. The target application of the paper is the front-end sales ap-
plication. After preprocessing the trace log, we obtain 7,244 SQL queries, 18 database
connection instances of the front-end sales application. 2989 types of queries are found
from the trace log, and only 4% of the queries have a frequency over 5. The queries are
classified into 190 user access events, which have an average frequency of 38. 18 user
access event sequences are obtained by replacing the queries with the corresponding
user access events, each sequence corresponds to one client application instance.

We choose half of the database traces as the training data, and randomly select four
user access event sequences from the remaining traces as the test data. Session iden-
tification is first performed on the data sets and then the sessions in the training data
are clustered using our session clustering method into 21 session clusters (classes). We

2 SQL Profiler is registered trademark of Microsoft Corporation.

500 Q. Yao, A. An, and X. Huang

prune out the clusters that have less than 10 session instances. We construct the corre-
sponding user access graphs for the remaining session clusters by using the algorithm
proposed in Section 4. In the experiment, we use the minimal support value of 3 and
the minimal confidence value of 0.05. Representative user access graphs are shown in
Figure 4. User access graph P1 1, P1 2 and P1 3 are high-level graphs. An instance
of user access graph P1 which retrieves a given customer’s profile is listed in Table
3. The graph instance can be interpreted as employee ’1025’ retrieve customer ’1074’
’s profile and treatment schedule at branch ’scar’ on 2003-03-04. Thus, the graph has
four parameters: user id (g uid), customer id (g cid), branch id (g bid), and login date
(g date), where g date is a constant. We observe that once query q9 is submitted, the
format of query q10, q20 and q49 are determined, thus they can be predicted. In the
correspond graph P1, events v30,v9,v47 are un-determined event, and events v10, v20
and v49 are parameter-determined by v9.

P1

P2

P3

P9

P11P14

P15

0.
05

0.17

0.0
8

0.21

0.5
3

0.07

Graph P1_1 , support =175

P16 P13 P21

0.65 0.77

P20
0.8

Graph P1_3, support =20

P4 P3
0.13

Graph P1_2, support =16

0.72

v30(l_uid) v9(l_cid) v10(g_cid) v20(g_cid) v47(g_cid, v49(10.g_cid)

 g_date,l_bid)
 actions:

 v30: g_uid=l_uid v9: g_cid=l_cid v47: g_bid=l_bid

0.79 0.90 1.00

Graph P1 (g_uid, g_cid, g_bid, g_date), support =175

0.90

Fig. 4. User access graphs

Table 3. An instance of user access path P1

ID Statement
q30 select authority from employee where employee id =’1025’
q9 select count(*) as num from customer where cust num = ’1074’
q10 select card name from customer t1,member card t2 where 1.cust num = ’1074’ and t1.card id =

t2.card id
q20 select contact last,contact first from customer where cust num = ’1074’
q47 select t1.branch ,t2.* from record t1, treatment t2 where t1.contract no = t2.contract no and

t1.cust id =’1074’ and check in date = ’2003/03/04’ and t1.branch = ’scar’
q49 select top 10 contract no from treatment schedule where cust id = ’1074’ order by checkin date

desc

To evaluate the user access graphs, we use them to predict the next request from a
sequence of the request history x : (x1, x2, ..., xn), where x is part of a session instance
in the test data. The method for predicting next request is straightforward. for each
session class gi, the probability that a request yi be the next request under gi is:

P (yi|x, gi) = P (yi|x1x2...xn, gi) = P (yi|xn−k+1...xn, gi)

Mining and Modeling Database User Access Patterns 501

where P (yi|xn−k+1...xn, gi) can be obtained from the transition probabilities of gi.
We predict next request to be yi only when P (yi|x, gi) exceeds a certain threshold
and P (yi|x, gi) achieves the maximum value among all classes. If the next request is
predicted correctly, we said it is a ”match”. We use F-Measure to measure the prediction
performance, which is defined as follows:

F − Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
,

where precision is defined as the ratio of the number of ”matches” to the total number
of predicted requests and the recall is the hit-rate, which is the portion of the requests
that are correctly ”matched”.

The result for request prediction is shown in Table 4, where there are 5,490 requests
in the test data. The prediction threshold is 0.8. Table 4 shows that the overall precision
of the prediction algorithm is very high, but the recall is not. The reason is that we can
not make prediction when there is limit request histories, which usually occurs when
a session just begins. The result shows that our method can effectively represent the
users’ access pattern and can predict users’ next requests well. In this application, a
5-order Markov-model performs the best.

Table 4. Request Prediction Performance

Markov predicted matched F-
order requests requests precision recall Measure
1 2718 2627 0.97 0.48 0.64
2 2870 2776 0.97 0.51 0.67
3 2874 2791 0.97 0.51 0.67
4 2894 2811 0.97 0.52 0.67
5 2918 2839 0.97 0.52 0.68
6 2927 2848 0.97 0.52 0.68
7 2918 2842 0.97 0.52 0.68
8 2926 2850 0.97 0.52 0.68
9 2377 2345 0.99 0.43 0.60
10 2425 2393 0.99 0.44 0.61
11 1979 1947 0.98 0.36 0.52
12 1979 1947 0.98 0.36 0.52

6 Related Work

Previous workload studies focus on describing the statistical summaries of run-time
behavior [7,12,2], clustering database transactions [11,5], predicting the buffer hit ra-
tio [1], and improving caching performance [6,8]. Chaudhuri et al [7] suggest to use
SQL-like primitives for workload summarization. A few examples of workload sum-
marization and the possible extensions to SQL and the query engine to support these
primitives are also discussed in the paper. In [12], a relational database workload an-
alyzer (REDWAR) is developed to characterize the workload in a DB2 environment.

502 Q. Yao, A. An, and X. Huang

Their study focused on statistical summaries, such as averages, variations, correlations
and distributions, and description of the runtime behavior of the workload. In [2], Hsu
et al analyze the characteristics of the standard workload TPC-C and TPC-D, and ex-
amine the characteristics of the production database workloads of ten of the world’s
largest corporations. Yu et al [11] propose an affinity clustering algorithm which parti-
tions the transactions into clusters according to their low-level database reference pat-
terns. Nikolaou et al [5] introduce several clustering approaches by which the workload
can be partitioned into classes consisting of units of work exhibiting similar character-
istics. Dan et al [1] analyze the buffer hit probability based on the characterization of
low-level database access to physical pages. They make distinctions among three types
of access patterns: locality within a transaction, random access by transactions, and se-
quential accesses by long queries. However, all above mentioned clustering algorithms
are based on the low-level reference patterns.

7 Conclusion

We have presented a new approach to mining and modeling database user access pat-
terns. To our knowledge, this is the first attempt to analyze database user access patterns
systematically. We use the user access events to represent the static features of a data-
base workload, and use the user access graphs to describe database query execution
orders. The mining results from our approach can be used to tune the database system
and predict incoming queries based on the queries already submitted, which can be
used to improve the database performance by effective query prefetching, query rewrit-
ing and cache replacement. Experiments show that our approach provides a promising
avenue for mining and modeling database users’ access behaviors. The work presented
in the paper has a broader impact on the database and data mining fields. It can also be
used on Web log analysis and DNA sequence analysis. We believe that our approach can
help database vendors develop intelligent database tuning tools and rule-based database
gateway. In the future, we plan to apply the proposed ideas to OLAP trace logs.

References

1. Asit Dan, Philip S. Yu, and Jen-Yao Chung. Characterization of database access pattern for
analytic prediction of buffer hit probability. VLDB Journal, 4(1):127–154, 1995.

2. W. W. Hsu, A. J. Smith, and H. C. Young. Characteristics of production database workloads
and the tpc benchmarks. IBM Systems Journal, 40(3), 2001.

3. Xiangji Huang, Qingsong Yao, and Aijun An. Applying language modeling to session iden-
tification from database trace logs. Knowledge and Information Systems: An International
Journal (KAIS), 2006.

4. Frederick Jelinek. Statistical Methods for Speech Recognition. The MIT Press, 1998.
5. Christos Nikolaou, Alexandros Labrinidis, Volker Bohn, Donald Ferguson, Michalis Arta-

vanis, Christos Kloukinas, and Manolis Marazakis. The impact of workload clustering on
transaction routing. Technical Report TR98-0238, 1998.

6. Carsten Sapia. PROMISE: Predicting query behavior to enable predictive caching strategies
for OLAP systems. In DAWAK, pages 224–233, 2000.

Mining and Modeling Database User Access Patterns 503

7. Vivek R. Narasayya Surajit Chaudhuri, Prasanna Ganesan. Primitives for workload summa-
rization and implications for sql. In VLDB 2003, Berlin, Germany, pages 730–741, 2003.

8. Qingsong Yao and Aijun An. Using user access patterns for semantic query caching. In
Database and Expert Systems Applications (DEXA), 2003.

9. Qingsong Yao, Aijun An, and Xiangji Huang. A distance-based algorithm for clustering
database user sessions. In ISMIS, 2005.

10. Qingsong Yao, Xiangji Huang, and Aijun An. A machine learning approach to identifying
database sessions using unlabeled data. In DaWaK, pages 254–264, 2005.

11. P. S. Yu and A. Dan. Performance analysis of affinity clustering on transaction processing
coupling architecture. IEEE TKDE, 6(5):764–786, 1994.

12. Philip S. Yu, Ming-Syan Chen, Hans-Ulrich Heiss, and Sukho Lee. On workload character-
ization of relational database environments. Software Engineering, 18(4):347–355, 1992.

	Introduction
	User Access Graph
	Discovering User Access Graphs
	Modeling Database User Sessions
	User Access Graph Generation with Markov Model
	Finding Relationship Between Nodes

	Experimental Results
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

