
We present a novel session identification method based
on statistical language modeling. Unlike standard time-
out methods, which use fixed time thresholds for ses-
sion identification, we use an information theoretic ap-
proach that yields more robust results for identifying
session boundaries. We evaluate our new approach by
learning interesting association rules from the seg-
mented session files. We then compare the performance
of our approach to three standard session identification
methods—the standard timeout method, the reference
length method, and the maximal forward reference
method—and find that our statistical language modeling
approach generally yields superior results. However, as
with every method, the performance of our technique
varies with changing parameter settings. Therefore, we
also analyze the influence of the two key factors in our
language-modeling–based approach: the choice of
smoothing technique and the language model order. We
find that all standard smoothing techniques, save one,
perform well, and that performance is robust to language
model order.

Introduction

Because of the rapid expansion of the World Wide Web,
the use of automated Web-mining techniques to discover
useful, relevant information has become an increasingly

important research area. One important subarea is Web
usage mining, wherein one attempts to discover patterns of
Web usage from Web log data. Although Web log data are
usually noisy and extremely ambiguous, there remains a po-
tential for discovering useful structure in the interactions be-
tween a Web site and its users. Such data can be studied to
generate inferences about Web site design, test prototypes of
Web sites or their modifications, and test hypotheses about
the effects of different design variables on Web-user behav-
ior (Burton & Walther, 2001).

Generally speaking, Web logs record users’ requests to a
Web server. A request is recorded in a log file entry, which
contains different types of information, including the IP ad-
dress of the computer making the request, the user access
date and time, the document or image requested, and so on.
Depending on the popularity of the Web site, a Web log can
record thousands or tens of thousands of requests every day.
To find useful patterns (such as association rules or sequen-
tial patterns) from this vast amount of information, requests
(or log entries) need to be grouped into usage sessions. A
session is defined as a group of requests made by a single
user for a single navigation purpose. A user may have a sin-
gle session or multiple sessions during a period of time.
Only once these atomic sessions have been identified can
common usage patterns among sessions be discovered by
Web usage mining algorithms.

The most commonly used session identification method
is called timeout, in which a user session is usually defined
as a sequence of requests from the same user such that no
two consecutive requests are separated by an interval more
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than a predefined threshold. This session identification
method suffers from the problem that it is difficult to set the
time threshold. Different users may have different naviga-
tion behaviors, and their time intervals between sessions
may be significantly different. Even for the same user, inter-
vals between sessions may vary. A dynamic session identifi-
cation method that is based on the context of requests would
seem to be much more appropriate.

The problem of determining session boundaries is not
only important for analyzing Web sever logs but also for
compiling database usage statistics. Currently, all database
vendors use the timeout method to collect data on the use of
their databases. These data are then used to compile statistics
for various database library routines (such as query opti-
mization). Library effectiveness depends critically on the ac-
curacy of the supplied data. A better session detection
method can improve the quality of the data collected for
these purposes (Duy & Vaughan, 2003).

The goal of our study is to overcome the problems of ex-
isting session identification methods by proposing a novel,
more accurate session detection method that can supply bet-
ter data for Web mining and database usage analysis. Our
proposed method is based on statistical language models. It
does not rely on any time intervals when identifying session
boundaries. Instead, it uses an information-theoretic ap-
proach to identifying session boundaries dynamically by
measuring the change of information in the sequence of re-
quests. To determine whether the proposed method works
well in practice, we conducted a series of experiments that
compare the language-modeling-based method with the
timeout method, as well as two other methods. We also in-
vestigate the effects of different parameter choices for our
statistical language models.

The remainder of this article is organized as follows.
First, in the next section, Related Work, we describe current
work on session identification in Web log data. Then, in Sta-
tistical Language Modeling, we introduce the basic elements
of statistical language modeling. We then describe how sta-
tistical language models can provide a natural method for
identifying session boundaries in the section on Session
Detection Using Language Models. In Empirical Evalua-
tion, we describe our method for evaluating session identifi-
cation methods, describe the data set we use in our evalua-
tion, and compare the performance of our proposed
language-modeling-based approach against three standard
session identification methods. In Analysis and Discussion,
we go over the experimental results. Implications of our
study for Web design are discussed in Implications of Find-
ings for Web Design. Finally, we conclude the article in the
last section, Conclusions and Future Work.

Related Work

There are several session identification methods reported
in the literature. The most common and simplest method is
timeout. In the timeout method, a session shift is identified
between two requests if the time interval between the two

requests is more than a predefined threshold. He and Goker
(2000) reported the results of experiments that used the
timeout method on two sets of Web logs. In their experi-
ments, the threshold was set large initially and then gradu-
ally decreased. The authors concluded that a time range of
10 to 15 minutes was an optimal session interval threshold.
Catledge and Pitkow (1995) also reported the results of an
experiment where a Web browser was modified to record the
time interval between user actions on the browser’s inter-
face. One result was that the average time interval between
two consecutive events by a user was 9.3 minutes. Assuming
that the most statistically significant events occur within 1.5
standard deviations from the mean, 25.5 minutes was subse-
quently recommended as the threshold for session identifica-
tion. However, the optimal timeout threshold clearly de-
pends on the specific problem. Once a site log has been
analyzed and its usage statistics obtained, a timeout thresh-
old that is appropriate for the specific Web site can be fed
back into the session identification algorithm. Despite the
application dependence of the optimal interval length, most
commercial products use 30 minutes as a default timeout.

Cooley, Mobasher, and Srivastava (1999) proposed a
transaction identification method, called reference length.
This method assumes that the amount of time a user spends
on a page is correlated with whether the page is an “auxil-
iary” or “content” page for that user. By analyzing the his-
togram of page reference lengths, the authors found that the
time spent on auxiliary pages is usually shorter than that
spent on a content page, and also that the variance of the
times spent on auxiliary pages is smaller than content pages.
If an assumption is made about the percentage of auxiliary
references in a log, then a reference length can be calculated
that estimates the optimal cutoff between auxiliary and con-
tent references based on the histogram. Once pages are clas-
sified as either auxiliary or content pages, a session bound-
ary will be detected whenever a content page is met. The
problem with this method is that only one content page is in-
cluded in each session. This may not be a good model for
real sessions because users may obviously look at more than
one content page for a single retrieval purpose.

A final session identification method, referred to as maxi-
mal forward reference, is from Chen, Park, and Yu (1998). In
this approach, each session is defined as the set of pages
from the first page in a request sequence to the final page
before a backward reference is made. Here, a backward ref-
erence is naturally defined to be a page that has already oc-
curred in the current session. One advantage of the maximal
forward reference method is that it does not have any para-
meters that make assumptions about the characteristics of a
particular data set. However, it has the significant drawback
that backward references may not be recorded by the server
if caching is enabled at the client site.

Statistical Language Modeling

The original motivation for statistical language modeling
comes from speech recognition, where the goal is to predict



1292 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2004

the probability of natural word sequences. Given a word
sequence, s � w1w2 p wN, its probability can always be
written using the probability chain rule as:

The simplest and most successful statistical language
models have been n-gram language models. In n-gram lan-
guage modeling, it is assumed that the probability of a word
only depends on its at most n � 1 preceding words. Thus, the
probability of a word sequence s becomes

A statistical language model, then, is a specific choice
of conditional probabilities for all possible n-grams:
P(wi�wi�n�1 p wi�1).

The quality of a given statistical language model can be
measured by its empirical perplexity and entropy on a given
corpus of text s (Bahl, Jelinek, & Mercer, 1983), where the
empirical perplexity of the model on s is defined as

and the empirical entropy of the model on s is

That is, we would like the language model to place high
probability on natural test sequences s, and hence obtain a
small value of empirical perplexity or entropy.

The key issue in statistical language modeling is how to
estimate the n-gram probabilities from a given corpus of
training data. A straightforward method for estimating n-
gram probabilities uses the observed frequencies of word se-
quences in the training corpus as follows:

(1)

where #(.) is the number of occurrences of a specified gram
in the training corpus. Although one could attempt to use this
simple n-gram model to capture long range dependencies in
language, such a simple approach to estimation suffers from
the sparse data problem. For example, to train a trigram
model with a vocabulary size of 20,000, there are 8 trillion
free parameters to be estimated. However, any reasonable
training set may only contain a sequence of a few million
words. In general, using grams of length up to n entails esti-
mating the probability of Wn events, where W is the size of
the word vocabulary. Because of the heavy tailed nature of
language (i.e., Zipf’s law), one is likely to encounter novel
n-grams that were never witnessed during training in a test

P(wi ƒwi-n+1 p wi-1) =
�(wi-n+1 p wi)

�(wi-n+1 p wi-1)

 = -
1

N
 log2 P(s) 

 Entropy(s) = log2 Perplexity(s)

Perplexity(s) = P(s)-
1
N 

P(s) = q
N

i=1
P(wi ƒ (wi-n+1 p wi-1)

 = q
N

i=1
P(wi ƒ (w1 p wi-1)

P(s) = P(w1)P(w2 ƒw1)P(w3 ƒw1w2) p P(wN ƒw1 p wN-1)

corpus, and the probability for these unseen n-grams should
clearly not be zero. Therefore, a mechanism for assigning
nonzero probability to novel n-grams is a central and un-
avoidable issue in statistical language modeling. One stan-
dard approach to smoothing probability estimates to cope
with the sparse data problem (and to cope with potentially
missing n-grams) is to use some sort of back-off estimator as
follows (Katz, 1987).

(2)

where

(3)

is called discounted probability and is a
normalization constant calculated to be 

(4)

Different methods can be used for computing the dis-
counted probability in Equation (3). Typical discounting
techniques include absolute smoothing (ABS), Good-Turing
smoothing (GT), linear smoothing (LIN), and Witten-Bell
smoothing (WB) (Chen & Goodman, 1998). The objective
of smoothing is to reserve a small amount of probability
mass for unobserved events. Different discounting tech-
niques have different assumption on how to reserve this
probability mass. In the next paragraphs, we briefly intro-
duce the four discounting methods we considered.

Absolute discounting. In absolute discounting, the fre-
quency of a word is subtracted by a constant c. The proba-
bility of wi given wi�n�1 p wi�1 is then calculated as:

where c is often defined as

where nr denotes the number of n-grams that occur r times.
The definition of nr also applies to the other smoothing tech-
niques, described below.

Good-Turing discounting. In standard Good-Turing
discounting, the frequency r is discounted as

GTr = (r + 1)
nr + 1

nr
 

c =
n1

n1 + 2n2

P̂   (wi ƒwi-n+1 p wi-1) =
�(wi-n+1 p wi) - c

�(wi-n+1 p wi-1)

�

1 � a
x:�(wi�n�1pwi�1x) � 0

  P̂(x ƒwi�n�1 p wi�1)

1 � a
x:�(wi�n�1pwi�1x) � 0

 P̂(x ƒwi�n�2 p wi�1)
 

�(wi-n+1 p wi-1)

�(wi-n+1 p wi-1)

P̂(wi ƒwi-n+1 p wi-1) =
discount�(wi-n+1 p wi)

�(wi-n+1 p wi-1)
 

e P̂(wi ƒwi � n � 1 p wi � 1),                if�(wi � n � 1 p wi) � 0

�(wi � n � 1 p wi � 1) � P(wi ƒwi � n � 2 p wi � 1), otherwise

P(wi ƒwi-n+1 p wi-1) =
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where the probability of wi given wi�n�1 p wi�1 is calcu-
lated as:

Linear discounting. In linear discounting, the probability
of a word wi given wi�n�1 . . . wi�1 is calculated as:

where � is defined as:

where N denotes the number of events (uni-grams).
Witten-Bell discounting. Witten-Bell discounting is simi-

lar to the linear discounting. The probability of a word wi

given wi�n�1 p wi�1 is calculated as:

where � is defined differently as:

where C denotes the number of distinct words that can fol-
low wi�n�1 p wi�1 in the training data.

Session Detection Using Language Models

Statistical language modeling has traditionally been used
in speech recognition. However, it has recently become
more widely used in many other application areas. Although
the original motivation of language modeling is to estimate
the probability of naturally occurring word sequences, lan-
guage modeling actually provides a general strategy for esti-
mating the probability of any sequence—regardless of
whether the basic units consist of words, characters, or any
other arbitrary alphabet. In this sense, many problems can be
formulated as a language-modeling problem. In Web usage
mining, Web pages (or objects) are visited sequentially in a
particular order, similar to the word sequences that occur in
a natural language. If we consider each visited object as a
basic unit, like a word or character in natural language, we
can then attempt to estimate the probability of object
sequences using the same language modeling tools
described earlier.

The basic goal of session identification is to group se-
quential log entries that are related to a common topic and
segment log entries that are unrelated. Language modeling
provides a simple, natural approach to segmenting these log
sequences. Imagine a set of objects on a common topic that
are frequently visited one after another. In this case, the

� � 1 �
C

�(wi � n � 1 p wi � 1) � C
 

P̂(wi ƒwi-n+1 p wi-1) = �  
�(wi-n+1 p wi)

�(wi-n+1 p wi-1)

� = 1 -
n1

N
 

P̂(wi ƒwi�n�1 p wi�1) � �  
�(wi � n � 1 p wi)

�(wi�n�1 p wi�1)

P̂(wi � wi -n +1 p wi -1) �
GT�(wi-n+1pwi)

�(wi -n +1 p wi -1)
 

1A general principle for setting the threshold is to generate the number
of sessions whose average length is in a reasonable range (say, 30 objects).
However, more principled ways for setting the threshold remain to be
investigated.

2Developed and sold by Open Text Corporation (http://www.
opentext.com).

entropy (or perplexity) of the sequence is low. However,
when a new object is observed in the sequence that is not rel-
evant to the original topic (but in fact indicates a shift to a
new topic), the introduction of this new object causes an in-
crease in the entropy of the sequence because it is rarely vis-
ited after the preceding objects. Such an entropy increase
serves as a natural signal for session boundary detection. If
the change in entropy passes a threshold, a session boundary
could be placed before the new object. In other words, the
uncertainty (which is measured by entropy) within a session
should be roughly constant, allowing for a fixed level of
variability within a topic. However, whenever the entropy
increases beyond a threshold, this presents a clear signal that
the user’s activity has changed to another topic. Thus, we
should set a session boundary at the place where the entropy
changes. The threshold on the entropy change can be tuned
to adjust the number of sessions generated.1

Figure 1 shows the entropy sequence we obtained in our
Web log data set, where the X-axis is the position of objects
and Y-axis is the entropy of the sequence from the first object
to the current object. As one can see, the entropy changes
radically at some points, although it remains stable in other
places. This figure gives an intuition how entropy could be
used for session boundary detection.

Empirical Evaluation

In this section, we present an empirical evaluation of the ef-
fectiveness of our language-modeling-based session-detection
method on a real application data set. Here, we first describe
the data set and data-preprocessing methods we used. We
then discuss our method for comparing different session
identification methods and finally present the evaluation
results we obtained. The section, Analysis and Discussion,
then follows with an analysis of the results.

The Data Sets

The log files used in our experiments were extracted from
Livelink access data over a period of two months. Livelink is
a Web-based system2 that provides automatic management
and retrieval of a wide variety of information objects over an
intranet or extranet. The size of the raw data is 7GB. The
data set describes more than 3,000,000 requests made to a
Livelink server from around 5,000 users. Each request cor-
responds to an entry in the log files, where each entry con-
tains the following:

1. The IP address the user is making the request from,
2. The cookie of the browser the user is making request

from, which can be as long as 5,000 bytes,



1294 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2004

0 1 2 3 4 5 6 7

x 10
5

11.5

12

12.5

13

13.5

14

14.5

FIG. 1. Entropy evolution in our Web log data set.

3. The time the request is made and the time the required
page is presented to the user,

4. The name of the request handler in the Livelink program,
5. The name of the method within the handler that is used to

handle the request,
6. The query strings that can be used to identify the page

and the objects being requested, and
7. Some additional information, such as URL addresses for

error-handling.

A sample log entry of Livelink is shown in Figure 2. For
privacy and security reasons, some of the lines are removed.

Data Preprocessing

Not all the information in a log entry is relevant to the
task of learning usage patterns of Livelink. To extract rele-
vant information, data preprocessing was conducted on the

FIG. 2. A Livelink log entry.
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raw log data. The following steps were performed to pre-
process the data in our investigation:

1. Identifying the user from each log entry,
2. Extracting the time the request was made,
3. Identifying the information objects requested in each

entry, and
4. Removing noisy entries (which request no interesting

objects).

We use both IP addresses and some background knowl-
edge to identify users in Livelink. The background knowl-
edge that we use is the object hierarchy of the information
maintained by Livelink. In Livelink, information objects are
organized into a forest that contains over 2,000 trees. A leaf
node of a tree corresponds to a document, such as a PDF file,
a PPT file, a project description, a picture, and the like. A
nonleaf node of a tree represents a folder that holds links to
other folders or objects. According to our domain experts,
about 10% of the trees are “public trees,” which can be vis-
ited by all or some of the users. The other 90% of the trees
are “private trees,” which can only be visited by a single
user. When identifying users, we first extract the IP address
from each log entry and then combine the IP addresses that
visited the same private tree into a single user. According to
our domain experts, making use of IP addresses to identify
users of Livelink is safer than using cookies. This is because,
first, most often users access Livelink from the desktop in
their office, and therefore most of the accesses are associated
with a fixed IP address. Also, in Livelink, cookies are related
to browser instances. Different browser instances invoked
by the same user on the same machine have different cook-
ies in Livelink logs. Therefore, instead of using cookies to
identify users, IP addresses and object tree structures are
used.

Another task, identifying objects from the large number
of dynamic Livelink pages, is a unique part of the problem.
An object could be a document (such as a PDF file), a folder,
a picture, and so on. Different types of objects have different
domains of identities. Based on Livelink domain knowl-
edge, we can extract the identities of the objects being re-
quested from the query string of the log entry. Most entries
contain exactly one object, although some entries contain no
objects or multiple objects. We ignore all entries that contain
no information objects. The total number of different objects
identified from the two-month Web log data is nearly
40,000. After these preprocessing steps, each entry contains
the user ID, the time-stamp, and the IDs of the requested ob-
jects. The entries are then sorted according to the user ID
first and the time-stamp as the second sorting key.

Session Identification

After the log entries are sorted by user ID and time-
stamp, the next step is to identify session boundaries in each
user’s request sequence. We evaluate four kinds of session
detection methods in the experiments. The first one uses the
timeout method, in which we set the fixed time thresholds to
be from 5 to 40 minutes in the experiments. The second one
uses a reference length method, in which we treat an object
on the leaf level of the object tree structure as a content page
and a nonleaf object as an auxiliary page. A session ends
after a user visits a content page. The third session identifi-
cation method is the maximal forward reference method, in
which a session ends right before an object already con-
tained in the session is requested.

The last method we evaluate is the n-gram language-
modeling-based method. In the experiments, we set n to be
from 1 to 6. We also investigate the effectiveness of four dif-
ferent smoothing methods for the language-modeling-based
session identification.

Evaluation Method

To determine whether the language-modeling-based
method is effective, we conducted association rule learning
from the sessions files generated by different session identi-
fication methods. We implemented the a priori algorithm
(Agrawal & Srikant, 1994) to learn association rules from
the presegmented Web log data. We then used these discov-
ered association rules to evaluate the quality of our session
detection method.

An association rule describes the association relation-
ships between the information objects. For example, an as-
sociation rule

[support � 0.01 confidence � 0.6]

means that 1% of the sessions contain objects o1, o2, o3, o4,
and o5, and that 60% of the sessions containing o1, o2, and
o3 also contain o4 and o5. The number of association rules
generated from a session file depends on the support and
confidence thresholds. For our data set, we found that the
number of rules generated is not significantly affected by
changing the confidence threshold. However, changing the
support threshold affects the number of retrieved rules sub-
stantially. If the support threshold is set high, a small number
of rules are generated and few of them are interesting. How-
ever, if we set the support threshold to be low, a huge num-
ber of rules are generated, which contain both interesting
and uninteresting rules. Table 1 shows how the number of
rules varies with the support threshold.

�o1, o2, o3� S �o4, o5� 

TABLE 1. Number of generated association rules (confidence threshold � 0.5).

Support threshold 0.02 0.01 0.008 0.005 0.003 0.0028 0.0025 0.002 0.001
Number of rules 2 14 39 88 723 4,556 74,565 4,800,070 �109
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3In association rule, AS B, A and B are sets of objects.
4We chose these interestingness measures because they have been

proven to be among the best measures in our previous research (Huang, An,
Cercone, & Promhouse, 2002).

From Table 1, one can see that a large number of rules can
be discovered if the support threshold is set very low. For
evaluation purposes, to find interesting rules from a large
number of discovered patterns, we rank the discovered rules
according to some interestingness measure and prune redun-
dant rules based on the structural relationship among rules
(Huang, An, Cercone, & Promhouse, 2002a,b).

We considered five interestingness measures for the pur-
pose of evaluating our new session detection method. These
measures were used to measure the interestingness of an as-
sociation rule AS B,3 as shown next.4

1. C2 (Bruha, 1997). The C2 formula measures the agree-
ment between A and B, and it has been evaluated as a
good rule quality measure for learning classification
rules (An & Cercone, 2001). It is defined as

2. Confidence (CS). The confidence of a rule is expressed as
P(B�A), which denotes the probability that objects in B
occur in a session conditioned on the occurrence of ob-
jects in A. With this measure, rules are ranked according
to their confidence value as the main key and their sup-
port value as the secondary key. Therefore, this measure
is denoted as CS.

3. IS. Derived from statistical correlation, the IS measure
(Tan & Kumar, 2000) is defined as

This measure is designed to be better suitable for situations
where the support value of the rule is low.

4. Measure of Discrimination (MD). The MD measure (An
& Cercone, 2001) was inspired by a query term weight-
ing formula used in information retrieval, and it has been
used to measure the quality of classification rules (An &
Cercone, 2001). We adopt the formula to measure the

IS �
P(AB)

2P(A)P(B)
 

C2 �
P(B ƒ A) � P(B)

1 � P(B)
 �

1 � P(A ƒ B)

2

extent to which an association rule ASB can discrimi-
nate between B and :

5. Mutual information (MI). The mutual information (Fano,
1961) between A and B is defined as

Informally, mutual information compares the probability
of observing A and B together (the joint probability) with
the probabilities of observing A and B independently.

The use of an interestingness measure can help identify
interesting association rules by ranking the discovered rules
according to the measure. After the rules are ranked accord-
ing to an interestingness measure, we then evaluate the in-
terestingness of the top-ranking rules by asking the domain
experts in Open Text, who determine whether a rule is inter-
esting or not according to the usefulness of the rule. In this
way, for each ranked list of discovered association rules gen-
erated by an interestingness measure from a session file, we
can calculate the percentage of the interesting rules in the top
10, 20, or 30 rules. We call this percentage precision. For ex-
ample, if there are 6 interesting rules in the top 10 rules of a
ranked list, the precision for the top 10 rules in this ranked
list is 60%.

Experimental Results

Results of the timeout method. For the timeout method, we
conducted experiments with a number of timeout thresholds:
namely, 5, 10, 15, 20, 25, 30, 35, and 40 minutes.  The results
of these timeout methods in terms of precision in the top 10,
20, or 30 ranked association rules are shown in  Tables 2, 3,
and 4 respectively. The entries in these three tables represent
the precision of the top n (where n � 10, 20, or 30) associa-
tion rules discovered by each interestingness measure with
respect to different time thresholds. The last row shows the
average precision of the five interestingness measures. The
best performance obtained in the top 10, 20, and 30 is 70%,

MI(A, B) = log2 
P(AB)

P(A)P(B)
 

MD = log 
P(A � B)(1 - P(A � B))

P(A � B)(1 - P(A � B))

B

TABLE 2. Top 10 precision of the timeout method.

Interestingness
Time interval

Measure 5 min 10 min 15 min 20 min 25 min 30 min 35 min 40 min Average

C2 30% 60% 60% 60% 60% 60% 60% 60% 56.25%
CS 20% 10% 10% 40% 40% 40% 40% 40% 30.00%
IS 30% 50% 50% 40% 50% 60% 50% 50% 47.50%
MD 60% 70% 70% 100% 100% 80% 80% 80% 80.00%
MI 100% 80% 80% 100% 100% 80% 80% 80% 87.50%
Average 48% 54% 54% 68% 70% 64% 62% 62% 60.25%
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TABLE 6. Results (precision) for the maximal forward reference method.

Interestingness measure Top 10 Top 20 Top 30

C2 0% 0% 0.0%
CS 0% 5% 3.3%
IS 0% 0% 0.0%
MD 0% 0% 0.0%
MI 20% 20% 16.7%
Average 4% 5% 4.0%

TABLE 4. Top 30 precision of the timeout method. 

Interestingness
Time interval

Measure 5 min 10 min 15 min 20 min 25 min 30 min 35 min 40 min Average

C2 30% 56.7% 53.3% 50% 56.7% 63.3% 70% 73.3% 56.7%
CS 16.7% 26.7% 26.7% 40% 40% 40% 40% 40% 33.8%
IS 36.7% 60% 53.3% 80% 60% 60% 66.7% 63.3% 60.0%
MD 60% 80% 80% 100% 86.7% 86.7% 86.7% 86.7% 83.3%
MI 100% 93.3% 93.3% 100% 100% 93.3% 93.3% 93.3% 95.8%
Average 48.7% 63.3% 61.3% 74% 68.7% 68.7% 71.3% 71.3% 65.9%
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FIG. 3. Comparison of timeout thresholds.

TABLE 5. Results (precision) for the reference length method.

Interestingness measure Top 10 Top 20 Top 30

C2 30% 45% 43%
CS 30% 35% 40%
IS 20% 40% 33%
MD 20% 50% 63%
MI 40% 55% 57%
Average 28% 45% 47.2%

TABLE 3. Top 20 precision of the timeout method.

Interestingness
Time interval

Measure 5 min 10 min 15 min 20 min 25 min 30 min 35 min 40 min Average

C2 20% 60% 55% 55% 60% 55% 60% 60% 53.125%
CS 15% 25% 20% 40% 25% 30% 30% 30% 26.875%
IS 25% 50% 40% 40% 40% 50% 50% 60% 44.375%
MD 50% 70% 70% 80% 90% 90% 90% 90% 78.750%
MI 100% 90% 90% 100% 100% 90% 90% 90% 93.750%
Average 42% 59% 55% 63% 63% 63% 64% 66% 59.375%

Results of the language-modeling-based method. For the
language-modeling-based methods, we experimented with
1-, 2-, 3-, 4-, 5-, and 6-gram models using four smoothing
methods. Three different entropy thresholds are set for each
model: namely, 0.0005, 0.0003, and 0.00025. The results for
the top 10, 20, and 30 rules are shown in Tables 7, 8, and 9,
respectively. In the tables, ABS, GT, LIN, and WB represent
absolute discounting, Good-Turing discounting, linear dis-
counting, and Witten-Bell discounting, respectively. Each
entry in the three tables represents the average precision in the
top 10, 20, and 30 rules averaged over five interestingness
measures. The last row in the three tables gives the average
results for each smoothing method. For example, the average
result for top 10 ranking using GT smoothing is 85.88%.

66%, and 74% under time thresholds 25, 40, and 20 min-
utes, respectively.

The performance of the standard timeout session detec-
tion method obviously depends on the time threshold. We
find that generally time thresholds between 20 and 40 min-
utes are good. A threshold that is too small (e.g., 5 minutes)
leads to poor performance. Figure 3 illustrates the influence
of different time thresholds in the top 10, 20, and 30 results.

Results of the reference length and maximal forward refer-
ence methods. Table 5 shows the precisions of the top 10, 20,
and 30 association rules for the reference length session
identification method with respect to each of the five inter-
estingness measures. The last row gives the average among
all the interestingness measures. Table 6 shows the same re-
sults for the maximal forward reference session identifica-
tion method. It can be observed that the two methods are not
as good as the timeout method.
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TABLE 7. Top 10 precision of the language modeling method.

Order Entropy threshold ABS GT LIN WB Average

1-gram 0.00025 78% 76% 74% 74% 75.5%
0.0003 76% 78% 72% 72% 74.5%
0.0005 86% 88% 88% 88% 87.5%

2-gram 0.00025 74% 74% 76% 78% 75.5%
0.0003 82% 82% 72% 70% 76.5%
0.0005 28% 30% 0% 0% 14.5%

3-gram 0.00025 90% 80% 84% 84% 84.5%
0.0003 84% 90% 78% 82% 83.5%
0.0005 84% 82% 0% 80% 61.5%

4-gram 0.00025 94% 96% 80% 86% 89.0%
0.0003 94% 96% 60% 80% 82.5%
0.0005 80% 86% 0% 80% 61.5%

5-gram 0.00025 100% 98% 94% 96% 97.0%
0.0003 98% 98% 90% 94% 95.0%
0.0005 96% 100% 94% 96% 96.5%

6-gram 0.00025 98% 98% 86% 100% 95.5%
0.0003 96% 98% 90% 98% 95.5%
0.0005 96% 96% 76% 96% 91.0%

Average 85.22% 85.88% 67.44% 80.77% 79.83%

TABLE 8. Top 20 precision of the language modeling method.

Order Entropy threshold ABS GT LIN WB Average

1-gram 0.00025 81% 81% 81% 81% 81.00%
0.0003 82% 84% 79% 79% 81.00%
0.0005 83% 87% 87% 87% 86.00%

2-gram 0.00025 80% 80% 76% 77% 78.25%
0.0003 88% 85% 73% 71% 79.25%
0.0005 19% 20% 0% 0% 9.75%

3-gram 0.00025 89% 80% 83% 85% 84.25%
0.0003 82% 87% 81% 86% 84.00%
0.0005 85% 86% 0% 85% 64.00%

4-gram 0.00025 92% 90% 80% 85% 86.75%
0.0003 87% 91% 33% 86% 74.25%
0.0005 82% 85% 0% 83% 62.50%

5-gram 0.00025 99% 97% 95% 96% 96.75%
0.0003 97% 97% 94% 97% 96.25%
0.0005 97% 98% 97% 97% 97.25%

6-gram 0.00025 98% 97% 88% 97% 95.00%
0.0003 97% 99% 94% 98% 97.00%
0.0005 98% 97% 96% 96% 96.75%

Average 85.33% 85.61% 68.72% 82.55% 80.55%

Figure 4 compares the language-modeling methods with
the timeout, reference length, and maximal forward refer-
ence methods in terms of average precision. The average
precision for the timeout method is taken from the 20-minute
results, which are among the best results for the different
time thresholds. One can observe that the average perfor-
mance of the language-modeling-based methods, using
either ABS, GT, or WB smoothing, is significantly better
than the best performance of the timeout method, and it is
also significantly better than the performance of the refer-
ence length and maximal forward reference methods. The
performance of the linear (LIN) smoothing technique is
comparable to the best performance of the timeout method,
but it is significantly better than the reference length and

maximal forward reference methods. Using a statistical t-test
at the level of � � 0.001, we find the following relationships
in performance: ABS � GT � WB � timeout optimal �
LIN � reference length � maximal forward reference.

Analysis and Discussion

We analyze our experimental results in three respects: (1)
we compare each of the different session identification
methods, and we assess the effects of the (2) different
smoothing methods and (3) the different n-gram orders on
the language-modeling-based approach.

Our results indicate that the language modeling method is
better than the timeout method, which is in turn better than
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FIG. 4. Comparison of smoothing methods for language modeling against
timeout.

TABLE 9. Top 30 precision of the language modeling method.

Order Entropy threshold ABS GT LIN WB Average

1-gram 0.00025 85.33% 84.67% 84.67% 84.67% 84.84%
0.0003 84.67% 84.00% 82.67% 82.67% 83.50%
0.0005 88.00% 85.33% 85.33% 85.33% 86.00%

2-gram 0.00025 83.33% 80.67% 76.67% 78.00% 79.67%
0.0003 85.33% 81.33% 75.33% 70.00% 78.00%
0.0005 19.33% 20.67% 0.00% 1.33% 10.33%

3-gram 0.00025 85.33% 78.67% 81.33% 84.00% 82.33%
0.0003 82.00% 84.67% 84.67% 84.00% 83.33%
0.0005 85.33% 84.00% 0.00% 88.00% 64.33%

4-gram 0.00025 92.00% 92.00% 70.67% 84.00% 84.67%
0.0003 89.33% 89.33% 24.67% 84.00% 71.83%
0.0005 82.67% 86.67% 0.00% 84.67% 62.50%

5-gram 0.00025 97.30% 97.30% 95.30% 97.30% 96.83%
0.0003 98.00% 98.00% 94.70% 97.30% 97.00%
0.0005 98.70% 97.30% 95.30% 97.30% 97.17%

6-gram 0.00025 98.00% 98.00% 92.00% 97.30% 96.33%
0.0003 96.70% 97.30% 94.70% 98.00% 96.67%
0.0005 98.00% 97.30% 85.30% 98.00% 94.67%

Average 86.07% 85.40% 67.96% 83.10% 80.63%

the reference length method, which is further better than the
maximal forward reference method. In our experiments, the
maximal forward reference method performs poorly because
the assumption that a session ends at every backward refer-
ence is incorrect. According to our domain experts, back-
ward references often take place within a single session, and
therefore the maximal forward reference method tends to
break a session into too many small pieces. As for the refer-
ence length method, the reason for its poor performance is
that the assumption that only one content page occurs in
each session is inappropriate. In Livelink, it is common for a
leaf-level information object to be related to some other
(leaf-level) objects, and therefore during a single session a
user may request several related objects. The timeout
method performed better than these two techniques in our
experiments. However, the strategy of assuming that a fixed
time interval threshold defines session boundaries is also

problematic. Clearly, in reality, users do not take a fixed
amount of time between sessions. A user may continue to a
different topic immediately after completing a task. An ad-
vantage of the language-modeling-based approach is that it
does not incorporate any of these fixed assumptions about
what constitutes a boundary between sessions. Instead, it
uses a much more dynamic criterion that detects changes in
information in the sequence of requested objects.

With respect to the smoothing technique for the language
modeling method, we observe that generally absolute
discounting (ABS) and Good-Turing discounting (GT) are a
bit better than Witten-Bell discounting (WB). All three
smoothing techniques are significantly better than linear dis-
counting (LIN). However, their performance also depends
on the order of the language model. For a 1-gram language
model, the performances of the four smoothing techniques
are all similar. If we look at the entropy evolution curves for
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FIG. 5. Comparison of n-gram language models with different choices
of n.
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FIG. 7. Entropy evolution curves for the language-modeling method with n � 2.

1-gram models (see Figure 6), we can observe that the curves
for the four smoothing methods overlap and the entropy
changes greatly along the sequence. The performance of the
four smoothing methods for 2-gram models is also similar
(see Tables 7, 8, and 9). Looking at Figure 7, one can observe
that the curves for the four smoothing methods are all pretty
flat, which explains why the performance in this case is not
very effective. However, the performance of the four smooth-
ing methods for 3-, 4-, 5-, and 6-gram models are distinguish-

able (see Tables 7, 8, and 9), especially for the 3- and 4-gram
models. Figures 8, 9, 10, and 11 show the entropy evolution
curves for the 3-, 4-, 5-, and 6-gram models, respectively. It
can be observed that the curves for ABS and GT smoothing
change more rapidly than the curves for the WB and LIN
methods. Between the curves for WB and LIN methods, the
curve for LIN is flatter than that for WB. This explains why
ABS and GT perform better than WB, and why LIN is the
worst performing method among smoothing techniques.
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FIG. 8. Entropy evolution curves for the language-modeling method with n � 3.
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FIG. 9. Entropy evolution curves for the language-modeling method with n � 4.

Finally, to determine the effect of n-gram order on perfor-
mance, we compare the average performance of n-gram
models with different choices of n; see Figure 5. This figure
shows that the 5-gram model performs the best, with the
6-gram model a close second, followed by the 1-, 3-, 4-, and
2-gram models, in that order. This result indicates that the
optimal performance of an n-gram model for session detec-
tion is achieved by a value of n that is neither too small nor
too big.

Implications of Findings for Web Design

In this article, we proposed a novel session identification
method based on statistical language models. We demon-
strated through a series of experiments that the proposed
method is superior to three existing session identification
methods. Because session identification is a crucial data-
processing step for Web log mining, our proposed method
has indirect impact on Web design by providing better, more
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FIG. 10. Entropy evolution curves for the language-modeling method with n � 5.
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FIG. 11. Entropy evolution curves for the language-modeling method with n � 6.

accurate data for Web log mining. Its importance can be
illustrated as follows in terms of what Web log mining can
do for Web design.

Web log mining can be used to reorganize a Web site to
better serve the users by finding patterns that relate pages
frequently visited together. Those highly related pages
should be directly linked together; or their content should be
put into one page so that users can directly obtain the needed

information. However, some existing direct links should be
dropped if they connect unrelated pages. Web log mining
can also be used to provide personalized Web service by dis-
covering browsing patterns and interests of one or a group of
users. The discovered patterns can be used to tailor Web
pages to users’ individual preferences, make personalized
recommendations, and let users bypass irrelevant content.
Personalization makes it easier and more pleasant for users
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to surf the Web and find what they want. For e-commerce
Web sites, such service can lead to more customer loyalty
and thus increase the profitability of the Web site.

Web log mining can also be used to enhance the perfor-
mance of Web-caching systems (Yang & Zhang, 2003). The
idea behind Web caching is to maintain a small set of re-
trieved Web pages in a local cache or a proxy server so that
the system performance can be improved by answering
users’ later requests from the cache. A key issue in a caching
system is its page replacement policy, which specifies condi-
tions under which a new page will replace an existing one. In
(Yang & Zhang, 2003), Web log mining is used to learn
frequent access patterns that can be used to predict future
Web requests. The prediction is then used to select the pages
to be replaced in a cache when a request arrives. Web log
mining can also be used to improve the performance of
Web search by reranking the retrieved pages with mined pat-
terns (Xue, Zeng, Chen, Ma, & Lu, 2002). All of these can-
not be accomplished without a good session identification
method.

Conclusions and Future Work

We have proposed a novel approach for session boundary
detection based on statistical n-gram language modeling.
Our approach is based on information theory and is intu-
itively understandable. Experiments on learning interesting
association rules from the Livelink data set show that we ob-
tain consistent improvements over the traditional timeout,
reference length, and maximal forward reference methods.
Our experiments also show that absolute smoothing, Good-
Turing smoothing and Witten-Bell smoothing are effective
smoothing techniques to use with the language modeling
method for session boundary detection.

Some questions are still open for further investigation.
For example, we have found that performance of the
language-modeling-based approach is sensitive to the en-
tropy threshold. A threshold value that is either too big or too
small will give nonoptimal performance. An automatic
threshold setting method should be investigated. Our future
work also includes investigating the effectiveness of the
language modeling approach on other data sets, and investi-
gating the effectiveness of the approach for other Web usage
mining problems, such as sequential pattern mining.
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