
An efficient approach to mining indirect associations

Qian Wan & Aijun An

Received: 14 February 2004 /Revised: 5 April 2005 /
Accepted: 27 May 2005
Springer Science + Business Media, LCC 2006

Abstract Discovering association rules is one of the important tasks in data mining.
While most of the existing algorithms are developed for efficient mining of frequent
patterns, it has been noted recently that some of the infrequent patterns, such as
indirect associations, provide useful insight into the data. In this paper, we propose
an efficient algorithm, called HI-mine, based on a novel data structure, called HI-
struct, for mining the complete set of indirect associations between items. Our
experimental results show that HI-mine’s performance is significantly better than
that of the previously developed algorithm for mining indirect associations on both
synthetic and real world data sets over practical ranges of support specifications.

Keywords Data mining . Association rule . Indirect association . Algorithm

1. Introduction

Since it was first introduced by Agarwal et al., in 1993, association rule mining has
been studied extensively by many researchers (Mannila et al., 1994; Park et al., 1995;
Savasere et al., 1995; Fayyad et al., 1996; Bayardo, 1998; Zaki et al., 1998; Agarwal
et al., 2000; Liu et al., 2002). As a result, many algorithms have been proposed to
improve the running time for generating association rules and frequent itemsets.
The latest includes FP-growth (Han et al., 2000; Han et al., 2004), which utilizes a
prefix-tree structure for compactly representing and processing pattern information,
and H-mine (Pei et al., 2001), which takes advantage of a novel hyper-linked data
structure and dynamically adjusts links in the mining process.

While most of the existing algorithms are developed for efficient mining of
frequent patterns, it has been noted recently that some of the infrequent patterns
may provide useful insight into the data. In Tan, Kumar, & Srivastava (2000), a new
class of patterns called indirect associations has been proposed and its utilities have
been examined in various application domains.

J Intell Inf Syst (2006) 27: 135–158
DOI 10.1007/s10844-006-2618-8

Q. Wan :A. An (*)
Department of Computer Science, York University, Toronto, ON M3J 1P3, Canada
e-mail: aan@cs.yorku.ca

Q. Wan
e-mail: qwan@cs.yorku.ca

Consider a pair of items, x and y, that are rarely present together in the same
transaction. If both items are highly dependent on the presence of another itemsets
M, then the pair (x, y) is said to be indirectly associated via M. Figure 1 illustrates a
high-level view of an indirect association.

There are many advantages to mining indirect associations in large data sets. For
example, an indirect association between a pair of words in text documents can be
used to classify query results into categories (Tan et al., 2000). For instance, the
words coal and data can be indirectly associated via mining. If only the word mining
is used in a query, documents in both mining domains are returned. Discovery of the
indirect association between coal and data enables us to classify the retrieved
documents into coal mining and data mining. There are also potential applications
of indirect associations in many other real-world domains, such as competitive
product analysis and stock market analysis (Tan et al., 2000).

An algorithm for mining indirect associations between itempairs, called
INDIRECT algorithm, was presented in Tan et al. (2000), and will be fully
described in the next section of this paper. There are two phases in the algorithm:

1. Extract all frequent itemsets using standard frequent itemset mining algorithms
such as Apriori (Agarwal & Strikant, 1994) or FP-growth (Han et al., 2000);

2. Discover valid indirect associations by checking all the candidate associations
generated from the frequent itemsets.

In this paper, we propose a new data structure, HI-struct, and develop a new mining
algorithm, HI-mine, for finding indirect associations in large databases. We show that
they can be used as a formal framework for discovering indirect associations directly,
with no need to generate all frequent itemsets as the first step. Empirical evaluations
comparing HI-mine to two versions of the algorithm described above show that HI-
mine performs significantly better on both synthetic and real world data sets.

The remaining of the paper is organized as follows. Section 2 reviews related
work and briefly exhibits the contribution of the paper. Next, we present the HI-
struct data structure and the HI-mine algorithm in Section 3. Our empirical results
are reported in Section 4. Finally, we conclude with a summary of our work and
suggestions for future research in Section 5.

2. Related work

Let I ¼ fi1; i2; . . . ; img be a set of m items. A subset X � I is called an itemset. A k-
itemset is an itemset that contains k items.

infrequent

M

x y

frequent frequent

Fig. 1 Indirect association between x and y via the mediator M

136 J Intell Inf Syst (2006) 27: 135–158

Let D ¼ fT1;T2; . . . ;Tng be a set of n transactions, called a transaction database,
where each transaction Tj (j2 f1; 2; . . . ; ng) is a set of items such that Tj � I . Each
transaction is associated with a unique identifier, called its TID. A transaction T
contains an itemset X if and only if X � T.

The support of an itemset X is the percentage of transactions in D containing X:
sup(X) = kftjt 2 D;X � tgk=kftjt 2 Dgk, where kSk is the cardinality of set S.

An itemset X in a transaction database D is called as a frequent itemset if its
support is equal to, or greater than a user-specified minimum support threshold,
min_sup. Accordingly, an infrequent itemset is an itemset that does not satisfy the
user-specified minimum support threshold.

Table 1 summarizes the notations that will be used throughout this paper and their
meaning.

2.1. Negative association rules

An association rule is an implication of the form X)Y, where X� I , Y� I , and
X \ Y = ;. Here, X is called the antecedent and Y is called the consequent of the
rule. The confidence of an association rule r: X)Y is the conditional probability
that a transaction contains Y, given that it contains X. The support of rule r is
defined as: sup(r) = sup(X[Y).

The importance of extending the traditional association rule framework to
include negative associations was first pointed out by Brin, Motwani, Ullman, &
Tsur in 1997. Since then, many techniques for mining negative associations have
been developed (Savasere et al., 1998; Tan et al., 2000; Wu et al., 2002).

In the case of negative associations we are interested in finding itemsets that have
a very low probability of occurring together. That is, a negative association between
two itemsets X and Y, denoted as X) Y or Y) X, means that X and Y appear very
rarely in the same transaction.

Mining negative association rules is computational intractable with a naive approach
because billions of negative associations may be found in a large database while almost
all of them are extremely uninteresting. This problem was addressed in Savasere et al.
(1998) by combining previously discovered positive associations with domain
knowledge to constrain the search space such that fewer but more interesting negative
rules are mined.

A general framework for mining both positive and negative association rules of
interest was presented in Wu et al. (2002), in which no domain knowledge was
requires, and the negative association rules were given in more concrete expressions

D a database of transactions

TDB an example transaction database

sup(I) the support of itemset I
dep(X, Y) dependence between itemsets X and Y
<x, yjM> an indirect association between x and y via M
ts itempair support threshold
tf mediator support threshold
ts mediator dependence threshold

IIS(D) indirect itempair set of D
MSS(i) mediator support set of item i

Table 1 Summary of notations
and their meaning

J Intell Inf Syst (2006) 27: 135–158 137

to indicate actual relationships between different itemsets. However, although the
sets of the positive and negative itemsets of interest in the database were minimized
in this framework, the search space for negative itemsets of interest was still huge.
Another problem was that it tended to produce too many negative association rules,
thus the practical application of this framework remained uncertain.

2.2. Indirect association and INDIRECT algorithm

Indirect association is closely related to negative association, they are both dealing
with itemsets that do not have sufficiently high support. Indirect associations
provide an effective way to detect interesting negative associations by discovering
only Binfrequent itempairs that are highly expected to be frequent’’ without using
negative items or domain knowledge.

Definition 1 (Indirect Association). An itempair {x, y} is indirectly associated via
a mediator M, if the following conditions hold:

1. sup({x, y}) < ts (Itempair Support Condition)
2. There exists a non-empty set M such that:

(a) sup({x} [M) � tf , sup({y} [M) � tf ; (Mediator Support Condition)
(b) dep({x}, M) � td, dep({y}, M) � td, where dep(P, Q) is a measure of the

dependence between itemsets P and Q. (Mediator Dependence Condition)

The thresholds above are called itempair support threshold (ts), mediator support
threshold (tf), and mediator dependence threshold (td), respectively. In practice, it is
reasonably to set tf � ts.

In the database and probability theories, an indirect association is a well-known
property of embedded multi-valued dependency (EMVD) and probability conditional
independence, where it is sometimes called an Binduced dependence.’’ (Wong & Butz,
2001) includes a comprehensive discussion on an independence in a small context
becoming a dependence in a larger context in both database and probability settings.

In this paper, the notation <x; yjM> is used to represent the indirect association
between x and y via M. And the IS measure (Tan & Kumar, 2000; Tan et al., 2002) is
used as the dependence measure for Condition 2(b). Given a pair of itemsets, say X
and Y, its IS measure can be computed using the following equation:

ISðX;YÞ ¼ PðX;YÞ
ffi

PðXÞPðYÞ
p ð1Þ

where P denotes the probability that the given itemset appears in a transaction.
An algorithm for mining indirect associations between pairs of items is given in

Tan et al. (2000) and Tan & Kumar (2001), which is shown in Figure 2. There are two
major phases in this algorithm:

1. extract all frequent itemsets using Apriori; (step 1)
2. discover all indirect associations by

(a) candidate generation (step 4);
(b) candidate pruning (steps 5–9).

In the candidate generation step, frequent itemset Lk is used to generate
candidate indirect associations for pass k+1, i.e., Ckþ1. Each candidate in Ckþ1 is a

138 J Intell Inf Syst (2006) 27: 135–158

triplet, <x; y;M>, where x and y are the items that are indirectly associated via the
mediator M. Ckþ1 is generated by joining the frequent itemsets in Lk. A pair of
frequent k-itemsets, fx1; x2; . . . ; xkg and fy1; y2; . . . ; ykg are joined together if the two
itemsets have exactly k-1 items in common; and thus produce a candidate indirect
association < x; y;M>, where x and y are the distinct items, one from each k-
itemset, and M is the set of common items. For example, two frequent itemsets,
{a, b, c, d} and {a, b, d, e}, can be joined together to produce a candidate indirect
association, <c; e; fa; b; dg>. Since the candidate associations are created by joining
two frequent itemsets, they all satisfy the mediator support condition. Therefore, in
the steps for candidate pruning, only itempair support condition and mediator
dependence condition are checked.

There are two join steps in the INDIRECT algorithm. One is in the first
phase for generating all the frequent itemsets with Apriori. In Apriori, the join
operation is used to generate candidate frequent itemsets for pass k + 1 based on the
frequent itemsets in Lk. The other join operation is for generating candidate indirect
associations, Ckþ1, from Lk. Both candidate generation steps can be quite expen-
sive, because each of them requires at most O(

P

k jLkj � jLkj) join operations.
The join operation for generating indirect association candidates is more

expensive than that in Apriori because the items in an indirect itempair, x and y,
do not have to be the last item in each frequent itemset, whereas Apriori only
combines itemsets that have identical k-1 prefix items, assuming that all the items in
an itemset are sorted in lexicographic order.

Moreover, no matter what implementation technique is applied, an Apriori-like
algorithm may still suffer from nontrivial costs in situations with prolific frequent
patterns, long patterns, or quite low minimum support thresholds.

Is there any other way that we may reduce these costs in indirect association
mining? Can we avoid generating all the frequent itemsets and a huge set of candi-
dates, and derive indirect association directly using some novel data structure or
algorithm?

2.3. Our solution

Our answers to the above questions are based on the following two strategies.

1. Instead of joining two frequent itemsets {a, b, c, d} and {a, b, d, e} to produce a
candidate indirect association < c, e, {a, b, d}>, we first generate the mediator

1. Extract frequent itemsets, L1, L2,…Ln, using frequent itemsets generation
algorithm, where Li is the set of all frequent i-itemsets.

2. P = ∅ (set of indirect associations)
3. for k = 2 to n do
4. Ck+1 = join(Lk, Lk)
5. for each < x, y , M> ∈ Ck+1 do
6. if (sup({x, y}) < ts and dep({x}, M) ≥ td and dep({y}, M) ≥ td)
7. P = P ∪ {< x, y , M>}
8. end
9. end
10. end

Fig. 2 The INDIRECT algorithm

J Intell Inf Syst (2006) 27: 135–158 139

support sets (defined in the next section) of item c and item e. Thus, if itemset
{a, b, d} can be found in these two sets, then bc, e, {a, b, d}À must be a valid
indirect association.

2. In order to avoid costly candidate generation, we use a divide-and-conquer
strategy to build the indirect itempair set (defined in the next section) and
mediator support sets by partitioning each set into disjoined subsets and
generating each subset in turn.

In the next section, we introduce our solution. The solution is based on the HI-
struct data structure and the HI-mine algorithm (Wan & An, 2003), which were
inspired by a novel hyper-linked data structure, H-struct, and an efficient algorithm,
H-mine, presented in Pei et al. (2001). H-struct and H-mine are designed for the
purpose of mining frequent patterns. We modify both of them for learning indirect
association. With HI-struct and HI-mine, we do not need to generate all the frequent
itemsets before mining indirect associations nor we need to do any join operation
for candidate generation. Instead, we generate two new sets: indirect itempair set
and mediator support set by recursively building the HI-struct data structures for
the database. Then indirect associations are discovered from these two sets directly
and efficiently.

3. Mining indirect associations using HI-mine

In this section, we first define Indirect Itempair Set and Mediator Support Set. We
then present the HI-mine (Hyper-structure Indirect-association Mining) algorithm
and illustrate the mining process of the algorithm using the two sets with an example.

3.1. Indirect itempair set and mediator support set

Given a transaction database D and three thresholds: itempair support threshold (ts),
mediator support threshold (tf), and mediator dependence threshold (td). The Indirect
Itempair Set and Mediator Support Set can be defined as follows.

Definition 2 (Indirect Itempair Set). Let L1 be the set of 1-itemset of D. We define
the indirect itempair set (IIS) of D as:

IISðDÞ ¼
�

< x; y >
�

�fxg 2 L1 ^ fyg 2 L1 ^ supðfxgÞ � tf

^ supðfygÞ � tf ^ supðfx; ygÞ < ts

�

Definition 3 (Mediator Support Set). Let L be the set of itemsets of D, and L1 be
the set of 1-itemset of D. The mediator support set (MSS) of x (fxg 2 L1^
supðfxgÞ � tf) is defined as:

MSSðxÞ ¼
�

M
�

�M 2 L ^ supðM [fxgÞ � tf ^ depðM; fxgÞ � td

�

Based on the definition of indirect association (Definition 1) and the above two
definitions (Definitions 2 and 3), it’s trivial to prove the following two Lemmas:

Lemma 1. If < x; yjM> is an indirect association of D, then: (1) < x; y>2 IIS(D);
and (2) M 2 MSS(x) and M 2 MSS(y).

140 J Intell Inf Syst (2006) 27: 135–158

Proof: If < x; y jM > is an indirect association of D, then from Definition 1 we can
get that:

(1) sup({x}) � tf , sup({y}) � tf , and sup({x, y}) < ts. By Definition 2, < x; y >2IIS (D).
(2) sup({x} [M) � tf , depðfxg [MÞ � td, and supðfyg [MÞ � tf , depðfyg [MÞ �

td. By Definition 3, M 2MSSðxÞ and M 2MSSðyÞ.

Í
Lemma 2. Let {x}, {y} and M be three itemsets of D. If: (1) < x; y >2 IIS (D);
and (2) M 2 MSS(x) and M 2 MSS(y), then < x; y jM> must be an indirect asso-
ciation of D.

Proof:

(1) If < x; y >2 IIS(D), then from Definition 2, we can get that supðfxgÞ � tf ,
supðfygÞ � tf , and supðfx; ygÞ < ts.

(2) If M 2MSSðxÞ and M 2MSSðyÞ, then from Definition 3, we can get that sup
ðM [fxgÞ � tf , dep ðM [fxgÞ � td, and supðM [fygÞ � tf , depðM[fygÞ � td.

Therefore, by Definition 1, < x; yjM > must be an indirect association of D.Í
Theorem 1. Let L1 be the set of frequent 1-itemset of D with respect to tf. By
intersecting MSS(x) and MSS(y) (where < x; y>2 IISðDÞÞ, the complete set of indirect
associations of D can be derived from IISðDÞ and all the MSS(x)s (where fxg 2 L1).

Proof: If IISðDÞ ¼ ; or for each fxg 2 L1, MSSðxÞ ¼ ;, then the complete set of
indirect associations of D is empty.

Suppose IISðDÞ 6¼ ;, and < x; y >2 IISðDÞ. Let MS = MSSðxÞ \MSSðyÞ 6¼ ;, and
M 2 MS. By Lemma 2, < x; y jM > is an indirect association of D.

We now show that any indirect association < x; yjM> of D can be obtained by
intersecting MSSðxÞ and MSSðyÞ, where < x; y>2 IISðDÞ. Suppose an indirect asso-
ciation <x0; y0jM0> of D cannot be generated in this way. Then, there are two
possibilities:

(1) < x0; y0> cannot be found in IISðDÞ. That is, < x0; y0> =2 IISðDÞ. From Lemma 1,
we have < x0; y0>2 IISðDÞ. This is a contradiction.

(2) M0 cannot be generated by intersecting MSSðx0Þ and MSSðy0Þ. That is M0=2
MSSðx0Þ \MSSðy0Þ. From Lemma 1, we have M0 2MSSðx0Þ and M0 2MSSðy0).
This is a contradiction.

TID List of itemIDs

T001 A, B, C, D

T002 A, B, E, F

T003 G, H

T004 B, C

T005 A, B, D, E, I

T006 B, C, D

T007 J, K

T008 L, M, N

Table 2 The transaction data-
base TDB

J Intell Inf Syst (2006) 27: 135–158 141

Therefore, all indirect associations of D can be derived from IISðDÞ and all the
MSS(x)s, where fxg 2 L1. Í
3.2. HI-struct: design and construction

The design and construction of HI-struct for efficient indirect association mining are
illustrated in the following example. The example transaction database TDB is
shown in Table 2. The HI-struct of TDB is a dynamic data structure that changes
during the process of recursively generating IISðDÞ and MSSs.

The initial HI-struct is constructed in the following steps.

1. Scan the transaction database TDB once. Collect the set of frequent items F
(with respect to tf) and their supports. Sort F in support descending order as L,
the list of sorted frequent items. For the example database, L is {B, A, C, D, E}.
Then a header table H is created, where each frequent item has an entry with
three fields: an item-id, a support count, and a pointer to a queue.

2. For each transaction T in TDB, select and sort the frequent items in T according
to the order of L. Let the sorted frequent item list in T be [tªT], where t is the first
element and T is the remaining list. [tjT] is called the frequent-item projection of
T . Add [tjT] to a frequent-item projection array, and append [tjT]’s index of the
array to t’s queue. Thus, all indexes of the frequent-item projections with the
same first item (in the order of L) are linked together as a queue, and the entries
in the header table H act as the heads of the queues.

The initial HI-struct of the example database is shown in Figure 3. Since all
frequent item projections in our example database start with B, the queues for other
items than B are empty at the moment.1 After the initial HI-struct is constructed, the
remaining mining process is performed on the HI-struct only, without referencing
any information in the original database.

The subsequent mining process involves building IIS(TDB) and MSS of each
frequent item. We use a divide-and-conquer strategy to build these sets by partitioning
each set into disjoined subsets and generating each subset in turn (see Figure 4).
Following the support descending order of frequent items: B, A, C, D, E, the complete

1 The initial header table of a database may contain more than one queue. We use a simple example
for the convenience of explanation.

Header Table of
TDB

Item Count Link
B 5

A 3

C 3

D 3

E 2

Index

01

02

03

04

05

Frequent-Item
Projection

Index Frequent Items

01 B,A,C,D

02 B,A,E

03 B,C

04 B,A,D,E

05 B,C,D

Fig. 3 The initial HI-struct of TDB

142 J Intell Inf Syst (2006) 27: 135–158

IIS(TDB) and MSSs of all the frequent items in our example database can be
partitioned into 5 subsets as follows:

(1) those containing item B;
(2) those containing item A but no item B;
(3) those containing item C, but no item B nor A;
(4) those containing item D, but no item B nor A nor C;
(5) those containing only item E.

Clearly, all the frequent-item projections containing item B, referred to as the B-
projected database, are already linked in the B-queue in the initial header table,
which can be traversed efficiently.

In the next section, we will show that, by mining the B-projected database
recursively, HI-mine can find IIS(TDB) and MSSs that contain item B. And then,
each index in B-queue is moved into the queue for the next item in header table H
following item B in the order of L to mine IIS(TDB) and MSSs containing item A
but not B.

The HI-struct after this adjustment is shown in Figure 5. For instance, the first
item after item B of index 01 is item A, so index 01 is moved into A-queue, while
index 03 is moved into C-queue since item C is the first item after item B of index
03. After the subsets containing item A but not B are mined, other subsets of
IIS(TDB) and MSSs are mined similarly.

Header Table of
TDB

Item Count Link
B 5

A 3

C 3

D 3

E 2

Index

01

02

04

03

05

Frequent-Item
Projection

Index Frequent Items

01 B,A,C,D

02 B,A,E

03 B,C

04 B,A,D,E

05 B,C,D

Fig. 5 HI-struct of TDB after mining B-projected database

<x, y | M>

IIS(TDB) and all MSSs in TDB
(frequent items: B-A-C-D-E)

IISs and MSSs
having item B

IISs and MSSs
not having item B

IISs and MSSs
having item A

IISs and MSSs
not having item A

IISs and MSSs
having item C

IISs and MSSs
not having item C

IISs and MSSs
having item D

IISs and MSSs
not having item D

MSSs only having item E

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Fig. 4 Divide-and-conquer strategy to build IIS(TDB) and all MSSs

J Intell Inf Syst (2006) 27: 135–158 143

4. HI-mine algorithm

There are two phases in the algorithm. In the first phase, we construct HI-struct and
generate itempair support set of the database and mediator support set of each
frequent item. In the second phase, we generate the complete set of indirect
associations based on the itempair support set and the mediator support sets. The
algorithm is described as follows.

Algorithm: HI-mine. (Mine indirect associations using an HI-struct)

Input: A transaction database (D), itempair support threshold (ts), mediator
support threshold (tf) and mediator dependence threshold (td).

Output: The complete set of indirect associations between itempairs.

Method:
1: build the initial HI-struct for D which includes a header table H and the

frequent-item projection array.
2: for each i such that item i is in the header table of HI-struct do
3: create header table Hi by scanning i-projected database in the same way as

building header table H except that item i is not considered (see Figures 6, 11–14)
4: call hi_mine (Hi)
5: append all the indexes in i-queue to the proper queues2 in H (see Figure 5)
6: end for
7: if IIS (D) 6¼; then
8: for all itempair < x; y > in IISðDÞ do
9: MS MSSðxÞ \MSSðyÞ
10: if MS 6¼ ; then
11: for all mediator M in MS do
12: output < x; y jM >
13: end for
14: end if
15: end for
16: else
17: output BIndirect associations do not exit in this database’’
18: end if

procedure hi_mine (Hm)

Header Table of
{B:5}

Item Count Link
A 3

C 3

D 3

E 2

Index

01

02

04

03

05

IIS(TDB) = ∅
MSS(A) = {{B}}
MSS(C) = {{B}}
MSS(D) = {{B}}
MSS(E) = {{B}}

Fig. 6 Header table HB and mining result

2 The proper queue is the queue of the item right after item i in the corresponding frequent-item
projection.

144 J Intell Inf Syst (2006) 27: 135–158

(Recursively mine the header table of itemset m and update IIS (D) and MSS (j), j =2 m)
1: for each item j in the header table Hm do
2: if the size of m is 1 and j’s count < minimum itempair support count then
3: add < m; j > to IISðD)
4: else if j’s count > minimum mediator support count then
5: if IS(j,m) > td then
6: add m to MSS(j)
7: end if
8: create header table Hmj by scanning j-queue in Hm (i.e., mj-projected

database) in the same way as building H except that item j and items in m are
not considered (see Figure 8)

9: call hi_mine(Hmj)
10: end if
11: append all the indexes in j-queue to the proper queues3 in Hm (see Figure 7)
12: end for

Let L ¼Bx1; x2; :::; xn’’ be the list of frequent 1-itemsets of D (with respect to tf) in
frequency-descending order. After build the initial HI-struct for D in step 1, the HI-
mine algorithm first constructs the header table of item x1 in step 3, using the x1-
queue in HI-struct, and calls procedure hi_mine(x1) in step 4 to find IISðDÞ and
MSSs that contain item x1.

In procedure hi mineðx1Þ, it tries to find those indirect itempairs that contain item
x1, and check whether fx1g can be added to the mediator support sets. Moreover, it
further partitions the subsets of MSSs and does recursive mining when item x1 is
locally frequent with respect to tf .

After IISðDÞ and MSSs that contain item x1 are found, all the indexes in x1-queue
are moved to the proper queues in header table H to mine all the IISðDÞ and MSSs
that contain item x2 but not x1.

Similarly, we can find the complete sets of IISðDÞ and MSS(x), where x 2 L.
Following Theorem 1, we can generate all the indirect associations of D from these
sets. This task is carried out from step 7 to step 18 in the algorithm.

4.1. Example

Figures 6 to 14 show the execution of the algorithm on the transaction database
TDB given in Table 2. The itempair support threshold ts and mediator support

Header Table of
{BA:3}

Item Count Link
C 1

D 2

E 2

Header Table of
{BA:3}

Item Count Link
C 1

D 2

E 2

Index

01

04

02

MSS(D)= + {B,A}
MSS(E) = + {B,A}

Index

04

01

02

Fig. 7 Header table HBA and mining result

3 The proper queue is the queue of the item right after item j in the corresponding frequent-item
projection.

J Intell Inf Syst (2006) 27: 135–158 145

threshold tf are set to be 25% (minimum support count and minimum mediator
support count are both 2),4 and the minimum dependence threshold td is 0.5.

First, to find IIS(TDB) and MSSs that contain item B, a B-header table HB

(shown in Figure 6) is created by traversing the B-queue in the header table H
(shown in Figure 3) once. In HB, every frequent item, except for B itself, has an
entry with the same fields as H, i.e., item-id, support count and a pointer to a queue.

The support count in HB records the support of the corresponding item in the B-
queue. For example, since item A appears 3 times in the frequent-item projections
of B-queue, the support count in the entry for A in HB is 3. And all indexes of the
frequent-item projection with the same first two items are linked together as a
queue, and the entries in the header table HB act as the heads of the queues. For
instance, the C-queue in HB stores all indexes of the frequent-item projections with
the same first two items BC.

Since all the items in HB are locally frequent, there is no indirect itempair
contains item B, and IIS(TDB) is empty after this scan. Then we compute the IS
measure between B and each item in HB:

ISðB;AÞ ¼ 3=
ffiffiffiffiffiffiffiffiffiffiffi

3� 5
p

¼ 0:77 ð2Þ

ISðB;CÞ ¼ 3=
ffiffiffiffiffiffiffiffiffiffiffi

3� 5
p

¼ 0:77 ð3Þ

ISðB;DÞ ¼ 3=
ffiffiffiffiffiffiffiffiffiffiffi

3� 5
p

¼ 0:77 ð4Þ

ISðB;EÞ ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffi

2� 5
p

¼ 0:63 ð5Þ

They all pass the minimum dependence threshold 0.5. Therefore, {B} should be in
the MSS of each of these items. The result is shown in Figure 6.

After {B} is appended into MSSs, a header table HBA is created by examining A-
queue in HB in the same manner as in generating HB from the B-queue in H. The
header table HBA is shown in the most left part of Figure 7. Then, the algorithm
recursively exams the BA-projected database to determine whether {B,A} belongs
to the MSSs of items C, D and E.

Since the local support count of C is less than 2, {B,A} is not added to MSS(C)
and the search along path BAC completes. Thus the index in the C-queue of HBA is
moved into the D-queue of HBA because D follows C in the projection
corresponding to the index, which is the first projection {B, A, C, D}. The resulting
header table after this adjustment is shown in the middle of Figure 7.

Header Table of
{BC:3}

Item Count Link
D 2

E 0

A 1

Header Table of
{B:5}

Item Count Link
A 3

C 3

D 3

E 2

Index

03

05

01

04

02

Index

05

01

MSS(D) = + {B,C}

∆

Fig. 8 Adjusted header table HB, header table HBC and mining result

4 The two thresholds are of the same value here just for the convenience of explanation. They can be
different.

146 J Intell Inf Syst (2006) 27: 135–158

Since D is locally frequent and passes the dependence threshold, {B,A} is added
to MSS(D). Then a header table HBAD(not shown here) is created, which contains
no local frequent items, and thus search along path BAD completes.

Similarly, {B,A} is added to MSS(E) and the process of mining the header table
HBA finishes. Then each index in the A-queue in table HB is moved to proper
queues as shown in the most left part of Figure 8.

After the above adjustment, the C-queue in HB(also referred to as BC-queue)
collects the complete set of frequent-item projections containing items B and C.
Thus, by further creating a header table HBC(shown in the middle of Figure 8),
MSSs containing item B and C but not A can be mined recursively.

Please note that item A appears in HBC because it does not belong to {B,C} and it
appears in the frequent-item projections of BC-queue. However, its queue is always
empty, that is, we will not append any index to its queue after D-queue or E-queue
in HBC has been mined since it has been considered in the mining of the BA-queue.
Thus, the A-queue in HBC is marked with B4’’. We need an entry for A here
because we need to output the correct support mediators in MSS(A) if the local
count of A is above the minimum mediator support count. The result is shown in
Figure 8. And the header table HBD and HBE, and their corresponding mining
results are shown in Figures 9 and 10 respectively.

In the next step, all the indexes in B-queue are moved into the proper queues in
H to mine IIS(TDB) and MSSs that contain item A but not B, and other subsets of
them. The header table H after this adjustment is shown in Figure 5.

Header table HA and the mining result are shown in Figure 11. Since C is locally
infrequent with respect to A, pair <A,C > is added to IIS(TDB).

Similarly, the mining process continues to discover IIS(TDB) and MSSs that
contain item C, item D and item E, as shown from Figures 12, 13 to 14. It is easy to
see that the above mining process finds the complete IIS(TDB) and MSSs because
we partition the sets into disjoined subsets and mine each subset by further
partitioning it recursively. The complete IIS(TDB) and MSSs for our example
database TDB are shown in Figure 14.

The second phase of the HI-mine algorithm is to compute the set of mediators for
each indirect itempair in IIS(TDB) (see steps 7–18 in HI-mine algorithm). For
example, the set of mediators for itempair <A, C> in IIS(TDB) is computed by

Header Table of
{BD:3}

Item Count Link
E 1

A 2 ∆
∆ C 2

MSS(A) = + {B,D}
MSS(C) = + {B,D}

Index

04

Fig. 9 Header table HBD

and mining result

Header Table of
{BE:2}

Item Count Link
A 2

C 0

D 1

MSS(A) = + {B,E}∆
∆
∆

Fig. 10 Header table HBE

and mining result

J Intell Inf Syst (2006) 27: 135–158 147

intersecting MSS(A) and MSS(C), which results in {{B}, {D}, {B, D}}. Therefore,
three indirect associations are discovered for itempair <A,C >:

< A;C jfBg >;< A;C jfDg >;< A;C jfB;Dg >

Similarly, the following indirect associations are discovered for itempairs <C, E >
and <D, E >:

< C;E jfBg >
< D;E jfAg >;< D;E jfBg >;< D;E jfA;Bg >

From Theorem 1, we can guarantee that the above mining process finds the
complete set of indirect associations without duplication.

4.2. Complexity analysis

Suppose there are N transactions in D. Let f be the number of frequent items of size
1, m be the maximal length of a single frequent itemset. We will now briefly discuss
the computational complexity of our algorithm from the following three aspects:
database scan, space usage and time complexity.

4.2.1. Database scan

The two most important performance factors of the association rules mining are the
number of passes made over the database and the efficiency of those passes (Brin
et al., 1997). The HI-mine algorithm described in the previous section shows that if
the frequent-item projections of D plus a set of header tables can fit in main memory
then two and only two scans of D are needed to build the initial HI-struct. First, it
scans D once to get the set of frequent items. Then it scans D again to construct an
HI-struct. After the initial HI-struct is constructed, the remaining mining process is
performed on the HI-struct only, without referencing any information in the original
database.

If the HI-struct cannot be held in main memory, then in the second scan of
database, we need to partition the set of frequent-item projections into f parts,

Header Table of
{C:3}

Item Count Link
D 2

E 0

A 1

Index

01

05

IIS(TDB) = + <C,E>
MSS(D) = + {C}

∆

Fig. 12 Header table HC and mining result

Header Table of
{A:3}

Item Count Link
C 1

D 2

E 2

Index

01

04

02

IIS(TDB) = + <A,C>
MSS(D) = + {A}
MSS(E) = + {A}

Fig. 11 Header table HA and mining result

148 J Intell Inf Syst (2006) 27: 135–158

where each part collects the frequent-item projections of one frequent item. At the
same time, the first partition (i.e., the set of frequent-item projections start with item
B in our example) is held in the main memory to build a partial HI-struct which
contains enough information for mining IIS(D) and MMSs that contain the first
frequent item. After that, the frequent-item projections in the first partition are
moved into proper partitions (in the same way as we adjust the indexes of frequent-
item projections in main memory), and the second partition is loaded in the main
memory to build and mine the partial HI-struct of the second frequent item (item A
in our example). This process continues until IIS(D) and MMSs that contain the last
frequent item (item E in our example) are generated.

One can easily see that a partial HI-struct is usually orders of magnitude smaller
than the global HI-struct. Therefore, there is a good chance for it to be fit in the
main memory. But if not, we can further partition the set of frequent-item
projections of each frequent item, and the process can go on recursively until the
partial HI-struct fits in the main memory.

4.2.2. Space usage

For each transaction in D, the initial HI-struct stores its frequent-item projection,
and the space requirement is:

PN
i¼1 jproðTiÞj, where jproðTiÞj is the length of a

frequent-item projection of a transaction Ti. Besides frequent-item projections, HI-
struct also stores a header table H. The maximal number of entries in the table is at
most the number of frequent items, so the space requirement of head table H is at
most 3f and the total size of all the queues is less than N.

To mine the HI-struct, the only space overhead is a set of local header tables. If
the maximal length of a single frequent itemset is m, then the corresponding
frequent itemset tree 5 would contain a maximum of f � 2m nodes. Therefore, in the
worst case, our algorithm will generate at most f � 2m header tables. However, there
are only a very limited number of header tables exist simultaneously in the
algorithm. For the previous example, to compute the frequent itemset ACDE, only
the header table for the prefixes of ACDE, i.e., HA, HAC, HACD and HACDE are
needed. All the other header tables either are already used and can be released, or
have not been generated yet. The header tables for frequent itemsets having item B
have already been used and can be released since all the frequent itemsets having
item B have been computed before frequent itemset ACDE. On the other hand, all
the other header tables will be used later and need not be generated at this moment.
Therefore, the number of header tables is no more than the maximal length of a

5 See the example frequent itemset tree shown in Liu et al. (2002) for more detail.

Header Table of
{D:3}

Item Count Link
E 1

A 2

C 2

Index

04
IIS(TDB) = + <D,E>
MSS(A) = + {D}
MSS(C) = + {D} ∆

∆

Fig. 13 Header table HD and mining result

J Intell Inf Syst (2006) 27: 135–158 149

single frequent itemset that can be found. Thus the total space usage of HI-mine
algorithm in the worst case is:

mð3f þNÞ þ
X

N

i¼1

jproðTiÞj

4.2.3. Time complexity

After building the initial HI-struct, there are two phases in the algorithm: first,
generate IIS(D) and all the MSSs; and then generate all the indirect associations.
The performance of the first phase dominates the performance of the overall
algorithm, since the size of transaction data is usually much more larger than the
size of IIS(D) and MSSs.

It’s easy to find that the complexity of the first phase depends on the total number
of the header tables used in the mining process, which is at most f � 2m as described
in the space usage section. In the worst case (e.g., header table H), the time
complexity of constructing and mining each header table is Oðp �NÞ, where p is the
maximal length of the frequent itemset projections. Therefore, the time complexity
of the first phase is Oð2m � f � p �NÞ in the worst case.

Suppose there are u itempairs that can be found in IIS(D) and the maximal
number of mediators in a single mediator support set is v, then the second phase will
take at most O(u�v2) time to discover the complete set of indirect associations.
Hence, the overall worst-case complexity of this algorithm is Oð2m � f � p� N þ u � v2).
Please note that N is far more greater than m, f, p, u and v in real world applications,
thus the total time is O(N).

5. Experimental evaluation and performance study

In this section, we report our experimental results on the performance of HI-mine in
comparison with two versions of the INDIRECT algorithm, INDIRECT-A and
INDIRECT-F, which extract frequent itemsets using Apriori and FP-growth in the
first step, respectively.

All the experiments are performed on a 533-MHz Pentium PC machine with
128M main memory, running on Microsoft Window 2000 Professional. All the
programs are written in Sun Java 1.3.1. The algorithms are tested on two types of
data sets: synthetic data, which mimic market basket data, and anonymous web data,
which belong to the domain of web log databases. To evaluate the performance of
the algorithms over a large range of data characteristics, we have tested the

Header Table of
{E:2}

Item Count Link
A 2

C 0

D 1

MSS(A) = + {E}

IIS(TDB) = {<A,C>,<C,E>,<D,E>}
MSS(A) = {{B},{B,D},{B,E},{D},{E}}
MSS(C) = {{B},{B,D},{D}}
MSS(D) = {{B},{B,A},{B,C},{A},{C}}
MSS(E) = {{B},{B,A},{A}}

∆
∆
∆

Fig. 14 Header table HE and mining result

150 J Intell Inf Syst (2006) 27: 135–158

programs on various data sets and only the results on some typical data sets are
reported here. Moreover, these algorithms generate exactly the same set of indirect
associations for the same input parameters.

Please note that run time used here means the total execution time, i.e., the
period between input and output. Also, in all reports, the run time of HI-mine
include the time of constructing HI-struct, and the run time of INDIRECT-F include
the time of constructing FP-tree from the original database as well.

6. Experiments with synthetic data

The synthetic data sets which we used for our experiments were generated using the
procedure described in (Agarwal & Strikant, 1994). These transactions mimic the ac-
tual transactions in a retail environment. The transaction generator takes the param-
eters shown in Table 3.

Each synthetic data set is named after these parameters. For example, the data
set T10.I5.D20K uses the parameters jTj ¼ 10; jIj ¼ 5, and jDj ¼ 20000. For all the
experiments, we generate data sets by setting N = 1000 and jLj ¼ 2000 since these
are the standard parameters used in Agarwal & Strikant (1994). We chose 2 values
for jTj: 5 and 10. We also chose 2 values for jIj: 3 and 5. And the number of
transactions are set to 20000, 50000 and 100000. Table 4 summarizes the data set
parameter settings. For the same jTj and jDj values, the size of data sets in
megabytes are roughly equal for the different value of jIj.

In our experiments, the itempair support threshold is set to be the same as the
mediator support threshold, and the mediator dependence threshold is set to be 0.1.
Figures 15 and 16 show the execution times for the six synthetic data sets given in
Table 4 for decreasing values of mediator support threshold. As the minimum
mediator support threshold decreases, the execution times of all the algorithms
increase because of increases in the total number of frequent itemsets.

ªDª Total number of transactions

ªTª Average size of transactions

ªIª Average size of maximal potentially frequent itemsets

ªLª Number of maximal potentially frequent itemsets

N Total number of items

Table 3 Parameters used in
the synthetic data generation

Name ªTª ªIª ªDª Size in

Megabytes

T5.I3.D20k 5 3 20k 0.6

T10.I5.D20k 10 5 20k 1.0

T5.I3.D50k 5 3 50k 1.3

T10.I5.D50k 10 5 50k 2.2

T5.I3.D100k 5 3 100k 2.5

T10.I5.D100k 10 5 100k 4.4

Table 4 Parameters settings of
synthetic data sets

J Intell Inf Syst (2006) 27: 135–158 151

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0

50

100

150

200

250

300

Mediator Support Threshold (%)

R
un

 T
im

e
(s

ec
on

d)

T5.I3.D20K

HI-mine
INDIRECT-F
INDIRECT-A

 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
0

100

200

300

400

500

600

700

800

900

1000

Mediator Support Threshold (%)

R
un

 T
im

e
(s

ec
on

d)

T10.I5.D20K

HI-mine
INDIRECT-F
INDIRECT-A

 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
0

100

200

300

400

500

600

700

800

Mediator Support Threshold (%)

R
un

 T
im

e
(s

ec
on

d)

T5.I3.D50K

HI-mine
INDIRECT-F
INDIRECT-A

Fig. 15 Run time comparison on synthetic data set (1)

152 J Intell Inf Syst (2006) 27: 135–158

 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65
100

200

300

400

500

600

700

800

900

Mediator Support Threshold (%)

R
un

 T
im

e
(s

ec
on

d)

T10.I5.D50K

HI-mine
INDIRECT-F
INDIRECT-A

 1 0.9 0.8 0.7 0.6 0.5 0.4
0

100

200

300

400

500

600

700

800

900

Mediator Support Threshold (%)

R
un

 T
im

e
(s

ec
on

d)

T5.I3.D100K

HI-mine
INDIRECT-F
INDIRECT-A

 2 1.5 1 0.95 0.9 0.85 0.8 0.75
0

100

200

300

400

500

600

700

800

900

1000

Mediator Support Threshold (%)

R
un

 T
im

e
(s

ec
on

d)

T10.I5.D100K

HI-mine
INDIRECT-F
INDIRECT-A

Fig. 16 Run time comparison on synthetic data set (2)

J Intell Inf Syst (2006) 27: 135–158 153

6.1. Experiments with real-world data

We test the algorithms on two real-world data sets. One of them was obtained from
http://kdd.ics.uci.edu/databases/msweb/msweb.html. It was created by sampling and
processing the www.microsoft.com logs. The data records the use of the Microsoft
web site by 38000 anonymous, randomly-selected users. For each user, the data lists
all the areas of the web site that user visited in a one week time frame. The data set
contains 32711 instances (transactions) with 294 attributes (items); each attribute is
an area of the www.microsoft.com web site. The corresponding performance curves
are illustrated in Figure 17.

The other data set was first used in Huang, An, Cercone, & Promhouse (2002b) to
discovery interesting association rules from Livelink6 web log data. This data set is
not publicly available for proprietary reasons. The log files contain Livelink access
data for a period of two months (April and May 2002). The size of the raw data is
7GB. The data describe more than 3,000,000 requests made to a Livelink server from
around 5,000 users. Each request corresponds to an entry in the log files. The detail of
data preprocessing, which transformed the raw log data into the data that can be used
for learning association rules, was described in Huang, An, & Cercone (2002a).

The resulting session file used in our experiment was derived from the 10-minute
time-out session identification method. The total number of sessions (transactions)
in the data set is 30,586 and the total number of objects7 (items) is 38,679. The
corresponding performance chart is shown in Figure 18.

6.2. Performance study

As we can see from the figures, the HI-mine algorithm outperforms the other two
algorithms on all data sets. At high support threshold values, HI-mine and INDIRECT-
F have similar performance and they both outperform INDIRECT-A. However, as the

6 Livelink is a product of Open Text Corporation (http://www.opentext.com).
7 An object could be a document (such as a PDF file), a project description, a task description, a
news group message, a picture and so on (Huang et al., 2002a).

 0.6 0.5 0.4 0.3 0.2 0.1 0.09 0.08
0

20

40

60

80

100

120

Mediator Support Threshold (%)

R
un

 T
im

e
(s

ec
on

d)

Microsoft Web Data

HI-mine
INDIRECT-F
INDIRECT-A

Fig. 17 Run time comparison
on Microsoft web log data

154 J Intell Inf Syst (2006) 27: 135–158

support threshold goes lower, the gap between INDIRECT-F and HI-mine and the gap
between HI-mine and INDIRECT-A become larger. It is interesting to observe that the
lines for HI-mine in the figures are quite flat, which means that the run time of HI-mine
does not increase much as the support threshold goes lower.

For synthetic data sets T10.I5.D20k and T5.I3.D50k, INDIRECT-F has almost the
same execution time as HI-mine when the mediator support threshold is over 0.7%.
When the mediator support threshold decreases under 0.7%, the performance gap
becomes outstanding. At the reasonable low support threshold of 0.5% in
T10.I5.D20k, for example, HI-mine requires 70 seconds, whereas INDIRECT-F
requires 238 seconds and INDIRECT-A requires 450 seconds. At the even lower
support threshold of 0.3% in T5.I3.D50k, HI-mine requires 46 seconds, while
INDIRECT-F requires 89 seconds and INDIRECT-A requires 759 seconds.

On Microsoft and LiveLink web data sets, when the support threshold is large, such
as 0.4% for Microsoft data set and 0.7% for LiveLink data set, INDIRECT-F behaves
the same as HI-mine. However, the performance gap becomes significant when the
support threshold decreases to lower value. For example, HI-mine finishes in 35
seconds while INDIRECT-F runs over 148 seconds and INDIRECT-A requires 345
seconds for the support level of 0.3% in LiveLink data set. When the support threshold
decreases to an even lower level, improvements of HI-mine are more striking.

The reason for which INDIRECT-F is better than INDIRECT-A is that FP-
growth does not generate candidates when it generates frequent patterns and the
generation of frequent patterns is based on a compressed tree structure (FP-tree),
which is usually much smaller than the original database. However, INDIRECT-F
generates candidates for indirect associations using a join operation. HI-mine does
not perform any candidate generation. It discovers indirect associations directly
based on the HI-struct data structure.

The reason that the run time of HI-mine does not change much with the support
threshold is that, when the support threshold decreases, the number of frequent
itemsets increases, but the number of indirect associations may not increase because
there are fewer indirect itempairs. For example, at mediator support 0.2% in Figure 18,
the number of indirect associations in Livelink web data is only 555 while the number
of frequent itemsets is 29,685. On the other hand, the run time of INDIRECT depends

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
0

100

200

300

400

500

600

700

800

Mediator Support Threshold (%)

R
un

 T
im

e
(s

ec
on

d)

LiveLink Web Data

HI-mine
INDIRECT-F
INDIRECT-A

Fig. 18 Run time comparison
on Livelink web log data

J Intell Inf Syst (2006) 27: 135–158 155

primarily on the number of frequent itemsets generated by Apriori or FP-growth.
Therefore, avoiding generating all the frequent itemsets in HI-mine makes it the most
efficient on both synthetic and real-world data sets at all levels of support threshold.

7. Conclusion

In this paper, we have proposed an efficient algorithm, HI-mine, which uses a new
data structure, HI-struct, to discover all indirect associations between items. The
salient features of HI-mine include that it avoids generating all the frequent itemsets
before generating indirect associations and that it generates indirect associations
directly without candidate generation. We have compared this algorithm to the
previously known algorithm, the INDIRECT algorithm, using both synthetic and
real-world data. As shown in our performance study, the proposed algorithm
significantly outperforms the INDIRECT algorithm, which uses a standard frequent
itemset generation algorithm such as Apriori and FP-growth to extract the frequent
itemsets before mining indirect associations.

For future research, there are several unresolved issues we need to address.

1. Scalability issue. The current implementation of HI-mine algorithm compresses
the database into frequent-item projections. If the projected database can be stored
in the main memory, there is no extra disk I/O in the subsequent mining process.
Otherwise, multiple scans of (part of) the projected database (usually much smaller
than the original database if the database is sparse) are needed in the process of
learning IIS(D) and MSSs. We will work on the issue of how to further reduce disk
I/Os when the database is huge, e.g., with millions of transactions.

2. Measure selection. In addition to the IS measure used in our paper, various
interestingness measures have been proposed to identify the statistical significance
of association rules. In the next step of our study, a proper evaluation of these
measures should be carried out before deciding what is the right measure to use
for finding interesting indirect associations. Threshold selection is another issues
that needs further investigation.

3. Framework extension. It is possible to extend our work to discover indirectly
associated itemsets rather than between a pair of items. In addition, we have
ideas for how to develop a broader framework to directly generate both positive
and negative association rules, and to improve the efficiency for interesting rule
generation as well.

Acknowledgments This research is supported by research grants from the Natural Sciences and
Engineering Research Council (NSERC) of Canada and Communications and Information
Technology Ontario (CITO). We would like to thank Mr. Miao Wen for his help in implementing
the INDIRECT algorithm.

References

Agarwal, R., & Strikant, R. (1994, September). Fast algorithms for mining association rules. In Proceedings
of 20th International Conference on Very Large Data Bases Santiago, Chile (pp. 487–499).

Agarwal, R., Imielinski, T., & Swami, A. (1993, May). Mining association rules between sets of items
in large databases. In Proceedings ACM SIGMOD International Conference on Management of
Data Washington, District of Columbia, USA(pp. 207–216).

156 J Intell Inf Syst (2006) 27: 135–158

Agarwal, R., Aggarwal, C., & Prasad, V. V. V. (2000). A tree projection algorithm for generation
of frequent itemsets. In Journal of Parallel and Distributed Computing (Special Issue on High
Performance Data Mining).

Bayardo, R. J. (May, 1998). Efficiently mining long patterns from databases. In Proceedings of the
International ACM SIGMOD Conference (pp. 85–93).

Brin, S., Motwani, R., Ullman, J., & Tsur, S. (May, 1997). Dynamic itemset counting and implication
rules for market basket data. In Proceedings of the International ACM SIGMOD Conference
(pp. 255–264). Tucson, Arizona, USA.

Fayyad, U.M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery:
An overview. In AAAI Press/MIT Press (Eds.), Advances in Knowledge Discovery and Data
Mining (pp. 1–36).

Han, J., Pei, J., & Yin, Y. (May, 2000). Mining frequent patterns without candidate generation. In
Proceedings of ACM-SIGMOD International Conference on Management of Data (pp. 1–12).
Dallas, Texas.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate gener-
ation: A frequent-pattern tree approach. Journal of Data Mining and Knowledge Discovery, 8,
53–87.

Huang, X., An, A., & Cercone, N. (2002a). Evaluation of interestingness measures in a real world
application. In submitted for Journal publication.

Huang, X., An, A., Cercone, N., & Promhouse, G. (2002b). Discovery of interesting association
rules from livelink web log data. In Proceedings of IEEE International Conference on Data
Mining. Maebashi City, Japan.

Liu, J., Pan, Y., Wang, K., & Han, J. (2002, July). Mining frequent itemsets by opportunistic
projection. In Proceedings of ACM-SIGKDD International Conference on Knowledge Discovery
and Data Mining. Edmonton, Canada.

Mannila, H., Toivonen, H., & Verkamo, A. I. (1994, July). Efficient algorithms for discovering
association rules. In AAAI Workshop on Knowledge Discovery in Databases (pp. 181–192).

Park, J. S., Chen, M. S., & Yu, P. S. (May, 1995). An effective hash-based algorithm for mining
association rules. In Proceedings of ACM-SIGMOD International Conference on Management
of Data. San Jose, California.

Pei, J. (2002). Pattern-growth methods for frequent pattern mining. PhD thesis, Simon Fraser University.
Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., & Yang, D. (2001, November). H-mine: Hyper-structure

mining of frequent patterns in large database. In Proceedings of the IEEE International
Conference on Data Mining. San Jose, California.

Savasere, A., Omiecinski, E., & Navathe, S. (1995, September). An efficient algorithm for mining
association rules in large databases. In Proceedings of the 21st International Conference on Very
Large Data Bases. Zurich, Switzerland.

Savasere, A., Omiecinski, E., & Navathe, S. (1998, February). Mining for strong negative
associations in a large database of customer transactions. In Proceedings of the 14th
International Conference on Data Engineering (pp. 494–502). Orlando, Florida.

Tan, P., & Kumar, V. (2000, August). Interestingness measures for association patterns: A
perspective. In KDD 2000 Workshop on Postprocessing in Machine Learning and Data Mining.
Boston, Massachusetts.

Tan, P., & Kumar, V. (2001, August). Mining indirect associations in web data. In Proc of
WebKDD2001: Mining Log Data Across All Customer TouchPoints.

Tan, P., Kumar, V., & Srivastava, J. (2000). Indirect association: Mining higher order dependencies
in data. In Proceedings of the 4th European Conference on Principles and Practice of Knowledge
Discovery in Databases (pp. 632–637). Lyon, France.

Tan, P., Kumar, V., & Kuno, H. (2001). Using gas for mining indirect associations in data. In Proc of
the Western Users of SAS Software Conference.

Tan, P., Kumar, V., & Srivastava, J. (2002, July). Selecting the right interestingness measure for
association patterns. In Proceedings of the 8th International Conference on Knowledge Discovery
and Data Mining. Edmonton, Canada.

Wan, Q., & An, A. (2003, June). Efficient mining of indirect associations using hi-mine. In Proceedings
of 16th Conference of the Canadian Society for Computational Studies of Intelligence, AI 2003.
Halifax, Canada.

Wong, & Butz, C. J. (2001). Constructing the dependency structure of a multi-agent probability
network. IEEE Transactions on Knowledge and Data Engineering, 13(3), 395–415.

Wu, X., Zhang, C., & Zhang, S. (2002, July). Mining both positive and negative association rules. In
Proceedings of the 19th International Conference on Machine Learning (ICML-2002) (pp. 658–
665). Sydney, Australia.

J Intell Inf Syst (2006) 27: 135–158 157

Zaki, M., & Orihara, M. (1998, June). Theoretical foundations of association rules. In Proceedings of
the 3rd ACM-SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery. Seattle, Washington.

Zheng, Z., Kohavi, R., & Mason, L. (2001, August). Real world performance of association rule
algorithms. In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, California.

158 J Intell Inf Syst (2006) 27: 135–158

	An efficient approach to mining indirect associations
	Abstract
	Introduction
	Related work
	Negative association rules
	Indirect association and INDIRECT algorithm
	Our solution

	Mining indirect associations using HI-mine
	Indirect itempair set and mediator support set
	HI-struct: design and construction

	HI-mine algorithm
	Example
	Complexity analysis
	Database scan
	Space usage
	Time complexity

	Experimental evaluation and performance study
	Experiments with synthetic data
	Experiments with real-world data
	Performance study

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

