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Abstract. We present a comparison of three entropy-based discretiza-

tion methods in a context of learning classi�cation rules. We compare

the binary recursive discretization with a stopping criterion based on

the Minimum Description Length Principle (MDLP)[3], a non-recursive
method which simply chooses a number of cut-points with the highest

entropy gains, and a non-recursive method that selects cut-points accord-

ing to both information entropy and distribution of potential cut-points

over the instance space. Our empirical results show that the third method

gives the best predictive performance among the three methods tested.

1 Introduction

Recent work on entropy-based discretization of continuous attributes has pro-
duced positive results [2, 6] . One promising method is Fayyad and Irani's binary
recursive discretization with a stopping criterion based on the MinimumDescrip-
tion Length Principle (MDLP) [3]. The MDLP method is reported as a successful
method for discretization in the decision tree learning and Naive-Bayes learn-
ing environments [2, 6]. However, little research has been done to investigate
whether the method works well with other rule induction methods. We report
our performance �ndings of the MDLP discretization in a context of learning
classi�cation rules. The learning system we use for experiments is ELEM2 [1],
which learns classi�cation rules from a set of training data by selecting the
most relevant attribute-value pairs. We �rst compare the MDLP method with
an entropy-based method that simply selects a number of entropy-lowest cut-
points. The results show that the MDLP method fails to �nd su�cient useful
cut-points, especially on small data sets. The experiments also discover that the
other method tends to select cut-points from a small local area of the entire value
space, especially on large data sets. To overcome these problems, we introduce a
new entropy-based discretization method that selects cut-points based on both
information entropy and distribution of potential cut-points. Our conclusion is
that MDLP does not give the best results in most tested datasets. The proposed
method performs better than MDLP in the ELEM2 learning environment.

2 The MDLP Discretization Method

Given a set S of instances, an attribute A, and a cut-point T , the class infor-
mation entropy of the partition induced by T , denoted as E(A; T ;S), is de�ned
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as

E(A; T ;S) =
jS1j

jSj
Ent(S1) +

jS2j

jSj
Ent(S2);

where Ent(Si) is the class entropy of the subset Si, de�ned as

Ent(Si) = �

kX

j=1

P (Cj; Si)log(P (Cj ; Si));

where there are k classes C1; � � � ; Ck and P (Cj; Si) is the proportion of examples
in Si that have class Cj . For an attribute A, the MDLP method selects a cut
point TA for which E(A; TA;S) is minimal among all the boundary points1. The
training set is then split into two subsets by the cut point. Subsequent cut points
are selected by recursively applying the same binary discretization method to
each of the newly generated subsets until the following condition is achieved:

Gain(A; T ;S) <=
log2(N � 1)

N
+
�(A; T ;S)

N

where N is the number of examples in S, Gain(A; T ;S) = Ent(S)�E(A; T ;S),
�(A; T ;S) = log2(3

k � 2)� [kEnt(S)� k1Ent(S1)� k2Ent(S2)], and k; k1 and
k2 are the number of classes represented in the sets S; S1 and S2, respectively.
Empirical results, presented in [3], show that the MDLP stopping criterion leads
to construction of better decision trees. Dougherty et al. [2] also show that
a global variant of the MDLP method signi�cantly improved a Naive-Bayes
classi�er and it also performs best among several discretization methods in the
context of C4.5 decision tree learning.

3 Experiments with MDLP Discretization and ELEM2

We conducted experiments with two versions of ELEM2. Both versions employ
the entropy-based discretization method, but with di�erent stopping criteria.
One version uses the global variant of the MDLP discretization method, i.e.,
it discretizes continuous attributes using the recursive entropy-based method
with the MDLP stopping criterion applied before rule induction begins. The
other version uses the same entropy criterion for selecting cut-points before rule
induction, but it simply chooses a maximal number of m entropy-lowest cut-
points without recursive application of the method. m is set to be maxf2; k �
log2lg where l is the number of distinct observed values for the attribute being
discretized and k is the number of classes. We refer to this method as Max-m.

Both versions �rst sort the examples according to their values of the attribute
and then evaluate only the boundary points in their search for cut-points.

We �rst conduct the experiments on an arti�cial data set. Each example
in the data set has two continuous attributes and a symbolic attribute. The

1 Fayyad and Irani proved that the value TA that minimizes the class entropy

E(A;TA; S) must always be a value between two examples of di�erent classes in

the sequence of sorted examples. These kinds of values are called boundary points.
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Training Predictive accuracy No. of cut-points No. of rules No. of Boun-

Set Size MDLP Max-m MDLP Max-m MDLP Max-m dary Points

47 56.71% 95.20% 0 14 3 6 58

188 90.41% 100% 2 21 4 6 96

470 100% 100% 5 22 6 6 97

1877 100% 100% 29 22 6 6 97

4692 100% 100% 73 22 6 6 97

Table 1. Results on the Arti�cial Domain.

two continuous attributes, named A1 and A2, have value ranges of [0; 90] and
[0; 5], respectively. The symbolic attribute, color, takes one of the four values:
red, blue, yellow and green. An example belongs to class \1", if the following
condition holds: (30 < A1 � 60) ^ (1:5 < A2 � 3:5) ^ (color = blue or green);
otherwise, it belongs to class \0". The data set has a total of 9384 examples. We
randomly chose 6 training sets from these examples. The sizes of the training sets
range from 47 examples (0:5%) to 4692 examples (50%). We run the two versions
of ELEM2 on each of the 6 training sets to generate a set of decision rules. The
rules are then tested on the original data set of 9384 examples. Table 1 depicts,
for all the training sets, the predictive accuracy, the total number of cut-points
selected for both continuous attributes, the total number of rules generated for
both classes, and the number of boundary points for both continuous attributes.
The results indicate that, when the number of training examples is small, the
MDLP method stops too early and fails to �nd enough useful cut-points, which
causes ELEM2 to generate rules that have poor predictive performance on the
testing set. When the size of the training set increases, MDLP generates more
cut-points and its predictive performance improves. For the middle-sized training
set (470 examples), MDLP works perfectly because it �nds only 5 cut-points
from 97 boundary points, which include all of the four right cut-points that the
learning system needs to generate correct rules. However, when the training set
becomes larger, the number of cut-points MDLP �nds increases greatly. In the
last training set (4692 examples), it selects 73 cut-points out of 97 potential
points, which slows down the learning system. In contrast, the Max-m method
is more stable. The number of cut-points it produces ranges from 14 to 22 and its
predictive performance is better than MDLP when the training set is small. We
also run the two versions of ELEM2 on a number of actual data sets obtained
from the UCI repository [4], each of which has at least one continuous attribute.
Table 2 reports the ten-fold evaluation results on 6 of these data sets.

4 Discussion

The empirical results presented above indicate that MDLP is not superior to
Max-m in most of tested data sets. One possible reason is that, when the training
set is small, the examples are not su�cient to make the MDLP criterion valid
and meaningful so that the criterion causes the discretization process to stop too
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Data Number of Predictive accuracy Average no. of rules

Set Examples MDLP Max-m MDLP Max-m

bupa 345 57.65% 66.93% 4 65

german 1000 68.30% 68.50% 107 100

glass 214 63.14% 68.23% 31 30

heart 270 81.85% 82.59% 48 30

iris 150 95.33% 96.67% 8 7

segment 2310 95.76% 90.65% 67 99

Table 2. Results on the Actual Data Sets.

early before producing useful cut-points. Another possible reason is that, even
if the recursive MDLP method is applied to the entire instance space to �nd
the �rst cut-point, it is applied \locally" in �nding subsequent cut-points due to
the recursive nature of the method. Local regions represent smaller samples of
the instance space and the estimation based on small samples using the MDLP
criterion may not be reliable.

Now that MDLP does not seem to be a good discretization method for
ELEM2, is Max-m a reliable method? A close examination of the cut-points pro-
duced by Max-m for the segment data set uncovers that, for several attributes,
the selected cut-points concentrate on a small local area of the entire value space.
For example, for an attribute that ranges from 0 to 43.33, Max-m picks up 64
cut-points all of which fall between 0.44 and 4, even if there are many boundary
cut-points lying out of this small area. This problem is caused by the way the
Max-m method selects cut-points. Max-m �rst selects the cut-point that has
the lowest entropy value and then selects as the next point the point with the
second lowest entropy, and so on. This strategy may result in a large number of
cut-points being selected near the �rst cut-point because their entropy values are
closer to the entropy value of the �rst cut-point than the entropy values of the
cut-points located far from the �rst cut-point. The cut-points located on a small
area around the �rst cut-point o�er very little additional discriminating power
because the di�erence between them and the �rst cut-point involves only a few
examples. In addition, since only the �rst m cut-pints are selected by Max-m,
selecting too many cut-points in a small area may prohibit the algorithm from
choosing the promising points in other regions.

5 A Revised Max-m Discretization Method

To overcome the weakness of the Max-m method, we propose a new entropy-
based discretization method by revising Max-m. The new method avoids select-
ing cut-points within only one or two small areas. The new method chooses cut-
points according to both information entropy and the distribution of boundary
points over the instance space. The method is referred to as EDA-DB (Entropy-
based Discretization According to Distribution of Boundary points). Similar to

Max-m, EDA-DB selects a maximal number of m cut-points, where m is de�ned
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as in the Max-mmethod. However, rather than taking the �rst m entropy-lowest
cut-points, EDA-DB divides the value range of the attribute into intervals and
selects in each interval mi number of cut-points based on the entropy calculated
over the entire instance space. mi is determined by estimating the probability
distribution of the boundary points over the instance space. The EDA-DB dis-
cretization algorithm is described as follows. Let l be the number of distinct
observed values for a continuous attribute A, b be the total number of boundary
points for A, and k be the number of classes in the data set. To discretize A,

1. Calculate m as maxf2; k � log2(l)g.
2. Estimate the probability distribution of boundary points:

(a) Divide the value range of A into d intervals, where d =maxf1; log(l)g.
(b) Calculate the number bi of boundary points in each interval ivi, where i =

1; 2; � � � ; d and
P

d

i=1
bi = b.

(c) Estimate the probability of boundary points in each interval ivi (i = 1; 2; � � � ; d)
as pi =

bi

b

3. Calculate the quota qi of cut-points for each interval ivi (i = 1; 2; � � � ; d) according
to m and the distribution of boundary points as follows: qi = pi �m

4. Rank the boundary points in each interval ivi (i = 1; 2; � � � ; d) by increasing order

of the class information entropy of the partition induced by the boundary point.

The entropy for each point is calculated globally over the entire instance space.
5. For each interval ivi (i = 1; 2; � � � ; d), select the �rst qi points in the above ordered

sequence. A total of m cut-points are selected.

6 Experiments with EDA-DB

We conducted experiments with EDA-DB coupled with ELEM2. We �rst con-
ducted ten-fold evaluation on the segment data set to see whether EDA-DB im-
proves over Max-m on this data set which has a large number of boundary points
for several attributes. The result is that the predictive accuracy is increased to
95.11% and the average number of rules drops to 69. Figure 1 shows the ten-fold
evaluation results on 14 UCI data sets. In the �gure, the solid line represents the
di�erence between EDA-DB's predictive accuracy and Max-m's, and the dashed
line represents the accuracy di�erence between EDA-DB and MDLP. The re-
sults indicate that EDA-DB outperforms both Max-m and MDLP on most of
the tested data sets.

7 Conclusions

We have presented an empirical comparison of three entropy-based discretization
methods in a context of learning decision rules. We found that the MDLPmethod
stops two early when the number of training examples is small and thus it fails
to detect su�cient cut-points on small data sets. Our empirical results also
indicate that Max-m and EDA-DB are better discretization methods for ELEM2
on most of the tested data sets. We conjecture that the recursive nature of the
MDLP method may cause most of the cut-points to be selected based on small
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Fig. 1. Ten-fold Evaluation Results on Actual Data Sets.

samples of the instance space, which leads to generation of unreliable cut-points.
The experiment with Max-m on the segment data set reveals that the strategy
of simply selecting the �rst m entropy-lowest cut-points does not work well
on large data sets with large number of boundary points. The reason for this
is that entropy-lowest cut-points tend to concentrate on a small region of the
instance space, which leads to the algorithm failing to pick up useful cut-points
in other regions. Our proposed EDA-DB method alleviates the Max-m's problem
by considering the distribution of boundary points over the instance space. Our
test of EDA-DB on the segment data set shows that EDA-DB improves over
Max-m on both the predictive accuracy and the number of rules generated. The
experiments with EDA-DB on other tested data sets also con�rm that EDA-DB
is a better method than both Max-m and MDLP.
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