
 

Fast Counting with AV-Space for Efficient Rule Induction 

Linyan Wang  and  Aijun An* 

Abstract* 
We present AV-space, a new data structure for caching 
data set statistics for efficiently learning classification 
rules from large data sets. The AV-space is designed to 
work with sequential-covering rule induction algorithms. 
It is used to accelerate queries about the count of the 
examples in a data set that satisfy a conjunction of attrib-
ute-value pairs. With an AV-space, the learning algorithm 
does not have to access the training data to obtain the 
statistics about the data. We present the structure of an 
AV-space, algorithms for building and querying an AV-
space, and procedures for dynamically updating the AV-
space during the rule induction process. We present an 
experimental evaluation that compares the AV-space with 
a commonly-used data structure that simply loads the 
(encoded) training examples into memory. We show that 
the use of AV-space significantly improves the speed of 
rule induction and that it consumes less memory on large 
data sets. 

1 Introduction 
Rule induction is a machine learning technique that 

discovers a set of if-then classification rules from data. 
An example of a classification rule is “if Temperature ≠ 
normal and Headache = yes then the patient has Flu.” The 
most widespread approach to inducing a set of classifica-
tion rules is called sequential-covering. Examples of 
sequential-covering algorithms include CN2 [4], ELEM2 
[1] and PRISM [3]. A sequential-covering algorithm 
learns a set of rules for every class in turn. For each class, 
it sequentially learns a set of rules that together cover the 
set of training examples belonging to the class. During 
this process, the most frequent operation is to count the 
examples that satisfy a conjunction of attribute-value 
pairs. Thus, the speed of the rule induction process 
greatly depends on the time spent on counting examples. 
Fast counting can accelerate the induction process. 

Most sequential-covering programs load the training 
data or an encoded version of the training data into the 
memory. The most commonly used data structure for 
holding the training data in memory is a dynamic array, 
where each element holds an example in the training data. 
To obtain the count of examples that satisfy a conjunc-
tion of attribute-value pairs, a scan of the array is needed, 

                                                           
* Department of Computer Science and Engineering 
York University, Toronto, Ontario, Canada, M3J 1P3 
{lwang, aan}@cse.yorku.ca 

during which the examples in the array are matched with 
the attribute-value pairs. Since such counting requests are 
frequently issued during rule induction, a large number 
of scans of training data are needed, which greatly im-
pede the learning process, especially when the training 
set is large.  

In this paper, we propose a new data structure, called 
AV-space, for holding the counts that may be required by 
a rule induction process. The AV-space is built with one 
scan of the training data. After it is built, the learning 
algorithm does not have to access the training data to 
obtain the counts of examples. A count can be obtained 
by traversing part of the AV-space, which is much faster 
than scanning the training data. Our experiments confirm 
that the use of the AV-space leads to much faster rule 
induction.    

2 Related work 
As large data sets become easily available in the real 

world, computational efficiency has become an impor-
tant issue in data mining. Much effort has been spent on 
speeding up data mining algorithms. In the area of asso-
ciation rule mining, a number of algorithms, such as FP-
growth [6] and Partition [12], have been proposed to 
accelerate the mining process. For example, FP-growth 
compresses a large transaction data set into a compact 
tree structure that is complete for frequent pattern mining. 
In the area of regression, Moore et al. investigated how 
kd-trees with multiresolution cached regression matrix 
statistics can enable very fast locally weighted and in-
stance based regression [10]. In decision tree learning, a 
few algorithms, such as RainForest [5], were proposed 
that used efficient data structures to speed up decision 
tree learning. In the area of classification rule learning, 
little work has been done on using efficient data struc-
tures to speed up the learning process. An exception is 
ADtree (All-Dimensions Tree) [2][7][9]. An ADtree is a 
tree structure that caches sufficient statistics for quick 
counting of training examples. It can be used to acceler-
ate Bayes net structure finding algorithms, rule learning 
algorithms and feature selection algorithms. An example 
of an ADtree is shown in Figure 1, which represents the 
data set shown in the bottom right hand corner of the 
figure. There are two types of nodes in the tree, ADtree 
node and Vary node. The root of the tree is an ADtree 
node containing the total number of the training exam-
ples representing all the attributes (* representing any 



 

values). The root is partitioned by a bunch of Vary nodes, 
each of which represents an attribute. On the second 
level, each Vary node contains a set of ADtree nodes. 
Each represents a conjunction of attribute-value pairs, 
such as 〈a1=1〉AND 〈a2=*〉AND〈a3=*〉. To save memory, 
the ADtree removes the nodes with count zero, and for 
each Vary node it replaces the ADtree child node with the 
most common value (MCV) with a node that stores a 
NULL value. An ADtree can be built by one scan over 
the data set. 

 

 
Figure 1.  The ADtree of an example dataset 

The ADtree can be used to answer counting queries 
about the data set. For example, we can obtain the num-
ber of examples satisfying 〈a1=2〉 AND 〈a3=1〉 with a 
specially-designed recursive algorithm [2]. The advan-
tage of using an ADtree is that there is no need to match 
the training data with the query. However, the ADtree has 
the following two problems when it is used with a se-
quential-covering algorithm. First, since the ADtree al-
ways returns a count from the entire data set, a problem 
arises when a rule is made more specific during the rule 
generation process. Rules with more attribute-value pairs 
take more time to evaluate. Second and more importantly, 
the ADtree cannot handle the rule tiling problem. In a 
sequential-covering algorithm, once a rule is generated, 
the examples that match the rule should be removed from 
the training set and then the mining of additional rules 
for a class is based on the remaining examples. The AD-
tree lacks a mechanism for subtracting the count that 
represents the number of the examples matched by the 
generated rule. An ADtree cannot update these counts 
during the rule induction process, since the sub-trees 
rooted by MCV nodes cannot be reconstructed. A new 
ADtree would have to be built from the remaining train-
ing set, ignoring the examples covered by the generated 
rules, in order to learn more rules for a class. To over-
come these problems, we propose AV-space. 

3 Basic Concepts and Background 
In classification rule learning, the training examples 

are described by a set of attributes. One of the attributes, 
called class attribute, describes the class membership of 
the examples. The other attributes are called condition 
attributes. A condition attribute can be symbolic or con-
tinuous. In most classification rule learning algorithms, 

continuous attributes are discretized into symbolic ones 
before rule induction begins. In this paper, we assume 
that the continuous attributes have been discretized.  

3.1 Conjunctive rule 
A rule induction algorithm learns a set of conjunc-

tive rules for each class. A conjunctive rule is an if-then 
rule whose antecedent contains a conjunction of condi-
tion attribute-value pairs and whose consequent indicates 
a class. An example of conjunctive rule is if 〈Tempera-
ture ≠ normal〉 AND 〈Headache = yes〉 then 〈Flu = yes〉.  

3.2 Conjunctive counting query 
A conjunctive counting query is a request for obtain-

ing the number of the examples in a data set that satisfy a 
conjunction of attribute-value pairs. In this paper, a con-
junctive counting query is represented as  

〈ai=vi1 or vi2 or ...or viki〉 AND 〈aj=vj1 or vj2 or ...or vjkj〉 
AND … AND 〈am=vm1 or vm2 or ...or vmkm〉, 

where ai, aj, ... am are attributes and vxy’s are attribute 
values. Here, an attribute-value pair may contain more 
than one value, i.e., a disjunction of multiple values1. An 
example of a conjunctive counting query is 〈color = blue 

or red or green〉 AND 〈height=medium〉. 

3.3 Sequential-covering algorithms 
Most of the rule induction algorithms employ the 

sequential covering technique. In general, a sequential-
covering algorithm works as follows: 

1. To learn a set of rules for class Ci, divide the training 
data into examples that belong to Ci (positive examples) 
and examples that do not belong to Ci (negative exam-
ples); 

2. Learn a conjunctive rule that covers as many positive 
examples as possible and as few negative examples. 

3. After a conjunctive rule is learned, remove the exam-
ples that are covered by this rule. 

4. Repeat steps 2 and 3 as long as there are positive ex-
amples that are not covered by the generated rules or 
some other criterion is met. 

5. Repeat the above process for all other classes and learn 
a rule set for each of them. 
To learn a single conjunctive rule in step 2, a gen-

eral-to-specific search can be conducted. That is, a rule 
can be learned by initializing its antecedent to be empty 
and then iteratively adding an attribute-value pair that 
optimizes an objective function until it covers only posi-
tive examples or another criterion is met. After a rule is 
generated, post-pruning is usually conducted to prevent 
the rule from overfitting the data. In post-pruning, some 
of the attribute-value pairs in the rule are removed if 
their removal can result in better performance according 
to a criterion.  

                                                           
1 Actually, we also allow a query to contain an attribute-value pair 
with an ≠ operator, such as 〈ai ≠ v2〉. Such an attribute-value pair can be 
transformed into an attribute-value pair with an “=” operator and multi-
ple “or” values. For example, assuming the value set of ai is {v1, v2, v3}, 
attribute-value pair 〈ai ≠ v2〉 can be transformed into 〈ai = v1 OR v3〉.    

a1=* 
a2=* 
a3=* 
c =6 

Vary a1 MCV=2 

MCV 

Vary a3 MCV=1 
Vary a2 MCV=3 

a1=1 
a2=* 
a3=* 
c =3 

a1=* 
a2=1 
a3=* 
c =1 

a1=* 
a2=4 
a3=* 
c =1 

a1=* 
a2=* 
a3=2 
c =1 

a1=1 
a2=1 
a3=* 
c =1 

Vary a2 MCV=3 Vary a3 MCV=1 
Vary a3 MCV=1 Vary a3 MCV=2 

Vary a3 MCV=1 

ID a1 a2 a3 

1 1 1 1 
2 2 3 1 
3 2 4 2 
4 1 3 1 
5 2 3 1 
6 1 3 1 

MCV 
MCV 

MCV MCV 
MCV 

MCV 

MCV 



 

3.4 ELEM2 heuristics 
ELEM2 is a sequential-covering algorithm [1]. We 

use it as a test bed to evaluate the AV-space. Below we 
describe three major heuristics used in ELEM2.   

Firstly, ELEM2 uses a hill-climbing general-to-
specific search method when generating a conjunctive 
rule. It uses a significance function to select an attribute-
value pair during the search. Let t be a candidate attrib-
ute-value pair and S be the set of examples covered by 
the already-selected attribute-value pairs for the current 
rule. The significance value (also referred to as weighted 
relative accuracy [8]) of t with respect to a class C and 
the set S is: 

SIGC,S (t) = P(t) (P(C|t) – P(C)), 
where the probabilities in the formula are estimated from 
the set S. During an attribute-value pair selection, dy-
namic grouping of attribute-values can be performed. For 
example, if 〈color=red〉 is selected, other values of color, 
such as 〈color=green〉, can be selected as well if its sig-
nificance value on the subset of S not covered by 
〈color=red〉 is no less than SIGC,S (〈color=red〉). This 
results in the generation of pair 〈color=red or green〉. 

Secondly, ELEM2 defines an unlearnable region 
(ULR) for each class to handle inconsistent examples. 
The ULR is used in one of the stopping criteria in rule 
induction. Let’s partition the training set into subsets: X1, 
X2, …, Xm, so that each Xi (1 ≤ i ≤ m) contains examples 
that are identical in terms of condition attribute values. 
We define the negative region of class C as: 

U
)()|(

)(
CPXCP
i

i

XCNEG
≤

=
 

The unlearnable region (ULR) of class C is defined as 
the set of positive examples in NEG(C). During 
ELEM2’s rule induction for class C, if the positive ex-
amples not covered by the already-generated rules for C 
belong to the ULR of C, the induction process for class C 
is stopped. This prevents ELEM2 from learning from 
inconsistent examples that do not provide positive classi-
fication gain.   

Thirdly, after a conjunctive rule is generated, ELEM2 
may post-prune the rule by removing some of the attrib-
ute-value pairs in the rule. For this purpose, ELEM2 uses 
a rule quality measure, evaluated on the training set, to 
determine which attribute-value pairs are removed from 
the rule. Assume R is a rule for class C (i.e., R predicts 
C). The quality of R is a log odds ratio, defined as 

))|(1)(|(

))|(1)(|(
log)(

CRPCRP

CRPCRP
RQ

−
−= , 

where P(R|C) is the probability that an example in the 
training set satisfies R given that the example belongs to 
C, and )|( CRP is the probability that an example satis-

fies R given that it does not belong to C. In ELEM2’s 
post-pruning process, an attribute-value pair is pruned if 
its removal does not decrease the rule quality. 

3.5 Major computation in rule induction 
From the above description, we can see that the ma-

jor computation in the rule induction process is the 
estimation of probabilities from training data. To 
estimate a probability, we need to count the examples 
satisfying certain conditions. For example, assuming that 
rule R is “if 〈a1= 2〉AND〈a3=1〉 then 〈class = C〉”, P(R|C) 
in Q(R) can be estimated as the number of examples 
satisfying 〈a1= 2〉AND〈a3=1〉AND〈class = C〉 divided by 
the number of examples satisfying 〈class = C〉. The 
requests for obtaining such numbers are conjunctive 
counting queries. Another observation is that the 
probabilities may need to be estimated from different 
subsets of the training data depending on the stage of 
sequential-covering rule induction. For example, when 
learning the first conjunctive rule for a class C, to select 
the first attribute-value pair, P(t) in SIGC,S (t) is estimated 
from the whole training set. However, when learning 
subsequent rules for C, P(t) should be estimated from the 
training examples not covered by the already learned 
rules for C. This is referred to as the rule tiling problem.  

4 AV-Space 
The objective of building an AV-space is to store the 

counts of examples so that conjunctive counting queries 
can be quickly answered without accessing the training 
data. To accommodate the rule tiling nature of sequen-
tial-covering algorithms, the counts stored in an AV-
space should be dynamically updated as the induction 
process progresses. 

4.1 The structure of AV-space 
An AV-space consists of two components: an AV-tree 

and an AVC-group. Figure 2 shows the structure of an 
AV-space, where the table on the left is the AVC-group 
and the rest is the AV-tree. 

4.1.1 AV-tree 
Let {a1, a2, …, aM} be the set of M attributes in the 

data set, where aM is the class attribute. An AV-tree con-
tains M+1 levels, where the root is at level 0 and each of 
the other levels corresponds to an attribute. For example, 
level 1 corresponds to attribute a1, level 2 to a2 and level 
M to the class attribute aM. Each node of the AV-tree 
represents a conjunction of attribute-value pairs. The root 
represents an empty conjunction that contains no attrib-
ute-value pair. Below the root, a node at level i repre-
sents a conjunction of i attribute-value pair(s). For exam-
ple, a node at level 1 represents one attribute-value pair 
from attribute a1, and a node at level 2 represents a con-
junction of two attribute-value pairs. We use Ci to repre-
sent a node on level 1, where Ci corresponds to the ith 
value of a1. On level 2, a node Ci,j represents a conjunc-
tion of two attribute-value pairs from a1 and a2: 〈a1 = ith 
value of a1〉 AND 〈a2 = jth value of a2〉, where 〈a1 = ith 
value of a1〉 is from the node’s parent on level 1. Simi-
larly, a node Ci,j,k on level 3 represents a conjunction of 
three attribute-values pairs from a1, a2 and a3: 〈a1 = ith 
value of a1〉 AND 〈a2 = jth value of a2〉 AND 〈a3 = kth 
value of a3〉.  In general, a node Ci1, i2, …, in  on  level  n



 

 
 

Figure 2. AV-space 
represents a conjunction of n attribute-value pairs from n 
attributes: 〈a1 = i1th value of a1〉 AND ……AND 〈an = 
inth value of an〉. Each node of the tree stores three counts: 
� Family count. The family count of a node is the total 

number of examples that satisfy the attribute-value pair 
conjunction represented by the node in the original 
data set. Since the root contains an empty conjunction, 
its family count is the total number of examples in the 
original data set. 

� Remaining count. The remaining count of a node is the 
number of examples not covered by the rules gener-
ated so far for the current class, but satisfying the at-
tribute-value pair conjunction represented by the node. 
The remaining count of the root is the total number of 
examples not covered by the already-generated rules. 

� AVP count. The AVP count of a node is the number of 
examples not covered by the already-generated rules 
for the current class but satisfying both the attribute-
value pair conjunction represented by the node and the 
conjunction of attribute-value pairs selected so far for 
the rule being learned at the moment. The AVP count 
of the root is the total number of examples that are not 
covered by the already-generated rules for the current 
class but covered by the attribute-value pairs selected 
so far for the rule being learned.  

To save space, the nodes with the zero family count 
are not created in the AV-tree. That is, only the combina-
tions of attribute-value pairs that appear in the training 
data are represented in the tree. An example of an AV-
space is depicted in Figure 3, which is built from the data 
set shown in Figure 1. The family count of a node never 
changes once the tree is built, since it represents the 
counts of examples in the original training set. The re-
maining count of a node remains static during the induc-
tion of a single conjunctive rule, but its value may 
change after a conjunctive rule is generated to reflect the 
removal of examples covered by the newly generated 
rule. The AVP count of a node changes dynamically 
whenever a new attribute-value pair is selected during 
the generation of a single conjunctive rule to reflect the 
count of the examples covered by the rule being learned. 

   

 
Figure 3. An example AV-space 

4.1.2 AVC-group 
The second component of an AV-space is an AVC-

group (standing for Attribute Value Count group). Each 
element of the AVC-group corresponds to an attribute-
value pair (AVP) that is present in the training data. The 
number of elements in the AVC-group is∑ =

M

i ik
1

, where M 

is the number of attributes and ki is the number of unique 
values of the ith attribute. An element of the AVC-group 
contains a counting set and a pointer. The counting set 
consists of a family count, a remaining count and an AVP 
count. Their definitions are similar to those for the tree 
nodes. The family count for pair 〈ai=vij〉 is the number of 
the examples in the original training data satisfying 〈ai= 
vij〉. The remaining count is the number of the examples 
satisfying 〈ai= vij〉, but not covered by the already-
generated rules for the current class. The AVP count is 
the number of the examples that are not covered by the 
already-generated rules for the current class, but satisfy 
both 〈ai= vij〉 and the conjunction of attribute-value pairs 
selected so far during the generation of the current con-
junctive rule. These counts are updated exactly in the 
same way as the counts stored in a tree node are updated.  

The pointer in the element corresponding to 〈ai= vij〉 
serves as a header to a linked list that connects all the 
nodes on the ith level of the AV-tree that contain 〈ai= vij〉 
in their corresponding conjunctions of attribute-value 
pairs. The purpose of this list is to be able to easily locate 
the nodes that contain a specific attribute value pair. An-

C2,3,1 

C2, 3 

C1,3,1 

C1, 1 

C1 

AVC-group 
CS: Counting Set 
F:  Family count 
R:  Remaining count 
A:  AVP count 

C2 
F=3 
R=3 
A=3 

F=1 
R=1 
A=1 

C1, 3 
F=2 
R=2 
A=2 

C2, 4 
F=1 
R=1 
A=1 C1,1,1 

F=1 
R=1 
A=1 

F=2 
R=2 
A=2 F=1 

R=1 
A=1 

F=2 
R=2 
A=2 

C2,4,2 
F=2 
R=2 
A=2 

F=3 
R=3 
A=3 

CS 
AVP 

F R A 

<a1=1> 3 3 3 

<a1=2> 3 3 3 

    

<a2 =1> 1 1 1 

<a2 =3> 4 4 4 

<a2 =4> 1 1 1 

    

<a3 =1> 5 5 5 

<a3 =2> 1 1 1 

F=6 
R=6 
A=6 

… 

C1, 1 

C = # 

Ck1 …... 

C k1, 1 

C1 

C k1, k2 C1, k2 

C1,1,.., 1, kM C k1, k2, k3 .…kM 

C1,…, 1 C k1, k2,1, …1 

C2, 1 

C 2 

AVC-group 

AVP Counting Set 
a1= v1, 1 CS1,1 
a1= v1, 2 CS1,2 
  M  M  

a1= v1, k1 CS1,k1 
a2= v2, 1 CS2,1 
  M  M  
  M  M  

a2= v2, k2 CS2,k2 
  M  M  
  M  M  

aM= vM , 1 CS1,1 
  M  M  

aM= vM , kM CSM , kM 

…... 

…... 

…... 

…... 

…

 

…

 

…

 

…

 

… 

… 

… 
…

 

…

 

…

 

…

 

Level 0 

Level 1 

Level 2 

Level M 

CS: Counting Set 

…

 



 

other advantage of the AVC-group can be seen during 
rule induction. A rule is learned sequentially by selecting 
one attribute-value pair at a time. An evaluation function 
chooses a pair based on a criterion that needs the number 
of the examples not covered by the already-generated 
rules but covered by the pairs selected so far for the rule 
being learned. This is exactly the AVP count of a single 
attribute-value pair which can be obtained by a query to 
the AVC-group (without accessing the tree).  

Please note that in the implementation of the AV-
space, there is no need to put the attribute-value pairs in 
the AVC-group or AV-tree. Given an attribute-value pair, 
the index to its corresponding AVP-group element can be 
easily computed if we arrange the attributes and their 
values in an order. This allows direct access to an ele-
ment of the AVC-group. 

4.2 Building an AV-space 
With M attributes and N examples in a dataset, we 

can pay one time cost, O(MN), to build an AV-tree. Be-
low is the algorithm for building an AV-space. 

 
Algorithm: 
Input: 
 
 
 
Output: 
Method: 

Build_AV-space 
A data set (D) with M nominal attributes, a1, 
a2, …aM, where aM is the class attribute;  
the number of unique values, ki, for attribute ai 
(i=1, …, M). 
An AV-space for D. 
Create an AVC-group with k1 + k2 +…+ kM elements 

and initialize all of its counts to 0; 
Create the root node pointed by root, initialize its 

three counts to 0; 
Create k1 child node pointers in the root, and initial-

ize the pointers to NULL; 
For each example e in D do 

Increment the three counts in root by 1; 
   node←root; 

For each attribute-value <ai=vij> (in the order 
from a1 to aM) in e do 

      currentNode←node; 
      node←addNode(ai, vij, ki, currentNode); 
   End 
End 

 
Algorithm: 
Input: 
 
Output: 
Method: 

 
addNode 
Attribute ai, the jth value vij of ai, the number ki of 
unique values of ai, the current node currentNode.  
The tree node associated with 〈ai=vij〉 
Increment by 1 the three counts in the element of the 
AVC-group corresponding to 〈ai=vij〉; 

If the jth child node pointer of currentNode is NULL, 
then 

   Create a new node, newNode; 
   Set the three counts in newNode to 1; 

 Set the jth child node pointer of currentNode to 
newNode; 

Link this node to the list headed by 〈ai=vi j〉 in 
the AVC-group; 

Else  
Increment the three counts of the jth child node 

of currentNode by 1; 
Return the jth child node pointer of currentNode; 

The algorithm first creates the AVC-group and the 
root of the AV-tree. It then scans the data set. For each 
attribute-value pair 〈ai=vij〉 in the first example, it creates 
a node at level i by calling the addNode procedure. These 
M nodes form a branch of the tree. Then, for each attrib-
ute-value pair 〈ai=vij〉 of the next example, it either in-
creases the counts of a tree node or adds a new node at 
level i by calling the addNode procedure, depending on 
whether the corresponding node existed or not. When a 
new node is added, it is added to the corresponding 
linked list of the AVC-group. The counts in the AVC-
group are also incremented for each attribute-value in an 
example. Note that all the three counts in a tree node or 
in an element of the AVC-group have the same value 
after the AV-space is initially built with this algorithm. 

4.3 Query Answering with an AV-space 
With an AV-space, we can answer a conjunctive 

counting query efficiently without accessing the original 
training examples. Given a query, the AV-space needs to 
know which count (family, remaining or AVP count) 
should be used to answer the query. Below are three 
situations where different counts are used: 

• During the attribute-value pair selection for generat-
ing a conjunctive rule, AVP counts are used to an-
swer a query about how many examples satisfy a 
conjunction of attribute-value pairs. 

• In the post-pruning procedure of some rule induction 
algorithms (such as ELEM2), a rule is evaluated 
over the entire training data. In this case, the family 
counts are used to answer a query. 

• After a conjunctive rule is generated in a sequential-
covering algorithm, some of the remaining counts in 
an AV-space should be updated. In order to update 
the remaining counts, we transform the newly-
generated rule into a conjunctive counting query, 
which will be described in Section 4.4. To answer 
such a query, the remaining counts need to be used. 
The algorithm for answering a query with an AV-

space is shown below. One of its input parameters is 
CountType, which specifies which count should be used 
to answer the query. 

 
Algorithm: 
Input: 
 
 
 
 
Output: 
 

Get_Count 
AVS: an AV-space of a data set; 
Query: a conjunction of attribute-value pairs, sorted ac-

cording to their attributes; 
CountType: the type of the counts (such as AVP counts) 

used to answer the query. 
The number of examples satisfying Query, stored in a 

global variable Count. 

Method: 
 
 
 

Initialize Count to 0; 
Let ElementSet be the set of elements in the AVC-group 

of AVS whose attribute-value pair satisfies the first pair 
of Query; 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm: 
Input: 
 
 
 
 
 
 
Output: 
 
Method: 

For each element in ElementSet 
If there is only one attribute-value pair in Query then 

Increment Count by the count of CountType in 
the element; 

Else 
If the count of CountType in the element is not 0, 
then 

Get the pointer to the node list of this element; 
Set index to 2; //index pointing to Query 
For each node in the list 

For each child node of this node 
If this child is not NULL , then 

GetNodeCount(child, CountType, 
Query, index); 

           End 
         End 
 
Get_Node_Count 
node: a tree node; 
CountType: the type of the counts (such as AVP counts) 

used to answer the query; 
Query: a conjunction of attribute-value pairs, sorted 

according to their attributes; 
index: the index of the current attribute-value pair in 

Query  
None. The found count is added to the global variable 
Count. 
If index exceeds the number of attribute-value pairs in 

Query, then 
   Return; 
If the count of CountType in node is 0, then  

Return; 
If the attribute corresponding to node is not the attribute 

in the indexth pair of Query, then 
   For each child node of this node 
     If this child is not NULL, then 
      Get_Node_Count(child, CountType, Query, in-

dex); 
   End 
Else 
   Let ValueSet be the set of values in the indexth pair of 

Query; 
   If the value corresponding to node2 is contained in 

ValueSet, then 
   If the indexth pair is the last pair in Query, then 

 Increment the Count by the count of 
CountType of node; 

   Return; 
   Else 

   For each child node of this node 
 If this child is not NULL, then 

Get_Node_Count(child, CountType, 
Query, index+1); 

         End 
 

The AV-space answers a query in a top-down fashion. 
Given a query, the Get_Count procedure first finds the 
AVC-group elements whose attribute-value pair satisfies 
the first attribute-value pair in the query3. Then, for each 

                                                           
2 The value corresponding to a node at level i is the value of the ith 
attribute in the conjunction of attribute-value pairs represented by the 
node. 
3 Note that an attribute-value pair in the query may contain a disjunc-
tion of values, as defined in Section 3.2. Therefore, there may be more 
than one element of the AVC-group match the query. Also, finding such 
elements can be done quickly through direct access to the array that 

of these elements, if the query contains only one attrib-
ute-value pair, the count specified by CountType in the 
element of AVC-group is added to the global variable 
Count; otherwise, if the specified count of the element is 
not zero, the procedure goes through the nodes in the 
linked list headed by the element as follows. For each 
child node of each node on the list, if the child node is 
not null, it calls the Get_Node_Count procedure to obtain 
the counts of the examples that satisfy the query and are 
covered by the subtree rooted at this child node. The 
child node is passed as the first parameter (named node) 
to the Get_Node_Count procedure. The last parameter of 
the procedure is the index that points to the next attrib-
ute-value pair to be processed in the query4. The Get-
_Node_Count procedure first checks whether the attrib-
ute corresponding to node matches the attribute in the 
indexth pair of the query. If not, it recursively calls the 
Get_Node_Count procedure with each of node’s non-null 
child nodes. If yes, it checks whether the value corre-
sponding to node matches the value(s) in the indexth pair 
of the query. If yes, it then checks whether the indexth 
pair of the query is the last attribute-value pair of the 
query. If yes, the count of the node specified by Count-
Type is added to the global variable Count. If the indexth 
pair is not the last pair in the query, it recursively calls 
the Get_Node_Count procedure with each of node’s non-
null children and an incremented index value. The final 
result is stored in the global variable Count. 

For example, suppose that we would like to answer 
the query “〈a1=2〉AND〈a3=1〉” with the AV-space shown 
in Figure 3. Assume that the Family counts are required 
to answer this query. The Count variable is initiated to 0. 
We start from the AVC-group element corresponding to 
〈a1=2〉 since 〈a1=2〉 matches the first attribute-value pair 
in the query. Since 〈a1=2〉 is not the last attribute-value 
pair of the query, we follow the list headed by this ele-
ment to node C2 and exam C2’s two child nodes, C2,3 and 
C2,4, in turn by calling the Get_Node_Count procedure. 
Since the corresponding attribute (i.e., a2) in C2,3 does 
not match the attribute (i.e., a3) in the second attribute-
value pair in the query, the Get_Node_Count procedure 
is called recursively with the child node of C2,3, which is 
C2,3,1. Since the attribute and value corresponding to 
C2,3,1 both match the second attribute-value pair in the 
query, the Family count in C2,3,1 is added to variable 
Count, resulting in 2. For the other child, C2,4, of C2, 
since none of its descendents matches with the second 
attribute-value pair, no count is added to variable Count. 
Therefore, the result for this query is 2. 

Please note that if the query contains only one attrib-

                                                                                             
stores the AVC-group. The attribute and values in an attribute-value 
pair of the query can serve as the indexes to the elements of the array.  
4 The index value for the first attribute-value pair in the query is 1, for 
the second it is 2, and so on.  



 

ute-value pair, we only need to visit one or more ele-
ments in the AVC-group to obtain the answer to the query, 
without accessing the AV-tree. Thus, answering such a 
query with an AV-space is very fast. In sequential-
covering algorithms, a conjunctive rule is generated by 
sequentially selecting attribute-value pairs. We evaluate 
each of the possible attribute-value pairs according to a 
selection criterion. To evaluate a pair, we need to obtain 
the number of examples that are not covered by the pre-
viously generated rules but are covered by the pair and 
the already-selected pairs. To obtain this number, we 
only need to issue a query with a single attribute-value 
pair to the AV-space to obtain the AVP-count from an 
element in the AVC-group because the AVP-counts in the 
AVC-group represent such numbers. That is, we do not 
need to form a query that concatenates the already-
selected pairs with the pair being evaluated. This greatly 
speeds up the process for attribute-value pair selection, 
and is an improvement over the ADtree algorithm. 

With respect to answering a general query, in the 
worst case, the data set contains all the possible combi-
nations of the attribute values and the query contains all 
the attributes in the data set. To answer such a query 
from an AV-space built from such a data set, we need to 
traverse the entire tree. If there are M attributes in a data 
set and each attribute has k values, the time complexity 
for answering a query in the worst case is O(kM).  

4.4 Updating the AV-space 
An important feature of an AV-space is that the 

counts stored in the AV-space are updated during the rule 
induction process. There are three situations where the 
counts need to be updated, which are described below. 

4.4.1  Updating AV-space after selection of an attrib-
ute-value pair 

During a single conjunctive rule generation, when-
ever an attribute-value pair is selected and added to the 
rule, some of the AVP counts in the AV-space need to be 
updated so that the AVP counts will not include the ex-
amples not covered by the newly-selected pair. The up-
dating process starts with the AVC-group. Suppose that 
the newly-selected attribute-value pair is 〈ai=vij〉. For 
each element E in the AVC-group that corresponds to 
〈ai=vik〉 (where k≠j), we do the following: 

• Change the AVP-count in E to zero; 
• For each AV-tree node, avnode, in the linked list headed 

by E, if the AVP-count of avnode is not zero,  
• For each ancestor, ancenode, of avnode,  

• Reduce the AVP count of ancenode by the 
AVP count of avnode; 

• Reduce the AVP count in the AVC-group ele-
ment that links to ancenode by the AVP count 
of avnode; 

• Change the AVP count in avnode to zero; 

• For each descendent, descnode, of avnode, if the 
AVP count of descnode is not zero,  

• Reduce the AVP count in the AVC-group ele-
ment that links to descnode by the AVP count 
of descnode; 

• Reduce the AVP count of descnode to zero. 
An example of updating an AV-space using this pro-

cedure is given in Section 4.5. In the best case, only one 
branch of the tree (from the root to a leaf) is visited dur-
ing this process. Thus, the best case time complexity is 
O(M), where M is the number of attributes. In the worst 
case, almost all the tree nodes are visited, meaning an 
O(kM) time complexity if all the possible combinations of 
attribute values occur in the data set, assuming k is the 
number of unique values for each attribute. However, 
this worst case, if it occurs, usually occurs when the first 
attribute-value pair is selected for a conjuctive rule. Up-
dating the AVP counts becomes faster and faster when 
more pairs are selected.    

4.4.2 Updating AV-space after generation of a single 
conjunctive rule 

After a conjunctive rule is generated, some remaining 
and AVP counts in the AV-space need to be updated to 
reflect the removal of the examples covered by the 
newly-generated rule. The procedure for updating the 
remaining counts is as follows. Suppose that the newly-
generated rule is “IF 〈ak1=vk1j1〉 AND 〈ak2=vk2j2〉 
AND…AND 〈akn=vknjn〉 THEN 〈aclass=k〉”. We first trans-
form this rule into a conjunctive counting query: 〈ak1 = 
vk1j1〉 AND 〈ak2=vk2j2〉 AND…AND 〈akn=vknjn〉 AND 
〈aclass=k〉, and then call a procedure that is similar to the 
Get_Count procedure (described in Section 4.3) to obtain 
the leaf nodes of the AV-tree that satisfy the query.  The 
difference between this procedure and Get_Count is that 
this procedure returns the nodes that satisfy the query but 
Get_Count returns the sum of the counts (e.g., AVP 
counts) of the nodes that satisfy the query. Since the 
query transformed from a rule contains an attribute-value 
pair of the class attribute, the nodes that satisfy the query 
must be leaf nodes. Then, for each leaf node, leafnode, 
returned by the procedure, we do the following:  
• Reduce the remaining count in the AVC-group ele-

ment that links to leafnode by the remaining count of 
leafnode; 

• For each ancestor, anode, of leafnode, reduce the re-
maining count in anode by the remaining count of 
leafnode, and also reduce the remaining count in the 
AVC-group element that links to anode by the Re-
maining count of leafnode; 

• Set the remaining count of leafnode to zero. 
After remaining counts are updated, each AVP count 

in the AV-space is refreshed to be the value of the re-
maining count in the same node or element. After that, 



 

the AV-space is ready for learning another rule for the 
current class. The time complexity of this procedure is 
the same as the one for updating the AVP counts de-
scribed in Section 4.4.1. 

4.4.3 Updating AV-space after learning a set of rules 
for a class 

The third case where an AV-space needs to be updated 
is when the learning of a set of rules for a class is fin-
ished. In order to learn a set of rules for the next class, 
we need to refresh all the remaining and AVP counts in 
the AV-space. This updating process is simply to copy the 
family count in each tree node or AVP-group element to 
its corresponding remaining and AVP counts. Note that 
this process only occurs once per class. 

4.5  Mining Rules with ELEM2 and AV-Space 
In this section, we show how to mine rules with 

ELEM2 and an AV-space. Let’s consider the Flu data set 
shown in Table 1, where Headache, Pains and Tempera-
ture are condition attributes and Flu is the class attribute. 
Below are the steps for generating rules for this data set. 

Table 1. Flu dataset 
Patient Headache Pain Temperature Flu 

x1 Yes yes Normal No 

x2 Yes yes High Yes 
x3 Yes yes very high Yes 

x4 No no high No 

x5 No yes normal No 
x6 No no high No 

x7 No yes very high Yes 

x8 No no High Yes 

x9 No yes very high No 

x10 No no High No 

 
1. Build an initial AV-space from the data set. The re-

sult is shown in Figure 4.  
2. Compute the unlearnable region (ULR) for class 

〈Flu=yes〉. 
2.1. Partition the training data set into subsets so that 

each subset contains examples with an identical set of 
condition attribute values. For the Flu data set, there 
are six such subsets, each corresponding to a tree 
node at level 3, represented by Ci,j,k. The partitioning 
of the training data set takes place when the AV-space 
is built in Step 1, and thus there is no extra computa-
tion time for this step. 

2.2. Compute the ULR of class 〈Flu=yes〉 by collecting 
all the positive examples in the subsets satisfying 
P(〈Flu=yes〉|subset)≤P(〈Flu=yes〉). In this data set, 
there is only one such example, which corresponds to 
tree node C1,1,2,2. Thus, ULR (〈Flu=yes〉) = {C1,1,2,2}. 

3. Generate the first conjunctive rule for class 〈Flu=yes〉. 
3.1. Select the first attribute-value pair by calculating the 

significance value (SIG) of each attribute-value pair 
and selecting the one with the highest SIG value. To 
compute the SIG value of a pair, 〈ai=vj〉, with respect 

to class 〈Flu=yes〉, we need to issue the following 
three queries on the AVP count to the AV-space:  

• 〈ai=vj〉 
• 〈ai=vj〉 AND 〈Flu=yes〉 
• 〈Flu=yes〉 

 
 

 
Figure 4. Initial AV-space for the Flu data set 

 
The first and third queries can be easily answered by 
looking up the AVC-group in the AV-space. The sec-
ond one can be answered by traversing the AV-tree 
starting from the nodes on the linked list headed by 
the AVC-group element for 〈ai=vj〉 down to the leaf 
nodes. After computing SIGs for all the possible pairs, 
pair 〈Temperature≠normal〉 is selected because it has 
the highest SIG value and covers more positive ex-
amples than the other pair with the highest SIG value. 

3.2. After the selection of 〈Temperature≠normal〉, the 
AVP counts in the AV-space are updated. For each 
AVC-group element that does not satisfy 〈Tempera-
ture≠normal〉 (i.e., the element corresponding to 
〈Temperature=normal〉), change its AVP count to zero. 
Then, for each tree node linked by element 〈Tempera-
ture=normal〉 (such as, C1,2,1), reduce the AVP counts 
in each of its ancestors (such as C1,2, C1, and the root) 
and in the AVC-group element linking to the ancestor 
by the amount of the AVP count of the tree node. The 
resulting AV-space is shown in Figure 5. 

3.3. Since the updated AVP count in the AVC-group ele-
ment corresponding to 〈Flu= no〉 is not zero, another 
attribute-value pair needs to be selected to specialize 
the rule. To select the second pair, the SIG value of 
each candidate pair is computed with respect to the 
updated AV-space. In this time, 〈Pain=yes〉 is selected. 

3.4. After 〈Pain=yes〉 is selected, the AV-space is updated. 
The rule generated so far is “IF 〈Temperature≠normal〉 
AND 〈Pain=yes〉 THEN 〈Flu=yes〉”. Since it still covers 
negative examples, a third pair is selected based on 
the updated AV-space. In this time, the pair 〈Head-

C2,2,3,2 

C2,2,1,1 

C1,2,3,1 

C1,2,1,1 

C1,1,2,1 

C2,2,1 

C1,2,3 

C1,2,1 

C1, 1 

C1 

AVC-group CS: Counting Set 

CS 
AVP 

F R A 

<Headache=no> 7 7 7 

<Headache=yes> 3 3 3 

    

<Pain=no> 4 4 4 

<Pain=yes> 6 6 6 

<Temperature=normal> 2 2 2 

    

<Temperature=high> 5 5 5 

<Temperature=very high> 3 3 3 

    

<Flu=no> 6 6 6 

<Flu=yes> 4 4 4 

C2 
F=7 
R=7 
A=7 

F=3 
R=3 
A=3 

F=4 
R=4 
A=4 

F=10 
R=10 
A=10 

C1, 2 F=3 
R=3 
A=3 

C2, 2 F=3 
R=3 
A=3 

C1,1,2 
F=4 
R=4 
A=4 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=2 
R=2 
A=2 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

C2,2,2 

C2,2,3 

F=3 
R=3 
A=3 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 C1,1,2,2 C1,2,3,2 

C2,2,2,2 



 

ache=yes〉 is selected and the AV-space is updated 
again (see Figure 6). Since the updated AVP count in 
the AVC-group element for 〈Flu=no〉 becomes 0 (i.e., 
the rule does not cover any negative examples), the 
process for generating a single conjunctive rule stops. 
The generated rule is “IF 〈Temperature≠normal〉 AND 
〈Pain=yes〉 AND 〈Headache=yes〉 THEN 〈Flu=yes〉”. 

 

 
Figure 5. The AV-space after the first AV-pair selection 

 
3.5. Post-prune the generated rule. To calculate the rule 

quality values in post-pruning, the family counts of 
the AV-space are used to answer the queries. The first 
row in Table 2 shows the rule quality value of the un-
pruned rule; and the second and third rows show the 
rule quality values of two rules with one pair removal. 
The rule in the third row is selected because its rule 
quality value is no less than that of the unpruned rule. 
That is, pair 〈Pain=yes〉 is removed from the gener-
ated rule. The rule becomes: IF 〈Temperature≠normal〉 
AND 〈Headache=yes〉 THEN 〈Flu=yes〉. 

4. After the first rule is generated and pruned, update the 
AV-space according to the procedure described in Sec-
tion 4.4.2. The resulting AV-space is shown in Figure 7. 

5. With the updated AV-space, we find that there are still 
some leaf nodes corresponding to 〈Flu=yes〉 whose 
remaining counts are not zero and these nodes do not 
belong to the ULR of class 〈Flu=yes〉. That is, there are 
still some positive examples that are not covered by 
the already generated rule(s) and do not belong to the 
unlearnable region of the current class. Thus, the learn-
ing of the second rule for class 〈Flu=yes〉 starts. The 
learning process for class 〈Flu=yes〉 stops until all the 
positive examples are covered or all the remaining 
positive examples belong to the ULR of the class.  

6. Update the AV-space by refreshing the remaining and 
AVP counts of each node or element using the family 
count of the node or element. Repeat Steps 2-5 to learn 
a set of rules for class 〈Flu=no〉.  

 

 
Figure 6. The AV-space after the third attribute-pair selection 
 

Table 2. Results of post-pruning the generated rule 
AVP1 AVP2 AVP3 Quality of Rule 

〈Temperature≠normal〉〈Pain=yes〉〈Headache=yes〉 1.114 
〈Temperature≠normal〉〈Pain=yes〉 0.932 
〈Temperature≠normal〉 〈Headache=yes〉 1.114 

 

 
Figure 7. The updated AV-space for the second rule learning 

 

5 Experimental Evaluation 
To evaluate the performance of the AV-space, we 

implemented in Java two versions of ELEM2 that use 
AV-space and Example-set (to be described below) as the 
main data structure, respectively. We compare the AV-
space-based ELEM2 with the Example-set-based 
ELEM2 in terms of execution time and memory cost. 
The experiments are conducted on a 3.0-GHz Pentium 
PC with a 512M main memory.  

5.1 The Data Sets 
The data sets used in our experiments were obtained 

from the UCI Repository [11]. Table 3 describes the data 
sets. Most of the data sets contain continuous attributes. 
We discretized continuous attributes so that after discre-
tization, all the attributes are treated as symbolic attrib-
utes. Table 3 also shows the number of attribute values 
and the number of nodes in the AV-tree for each data set. 

C2,2,3,2 

C2,2,1,1 

C1,2,3,1 C1,2,1,1 C1,1,2,1 

C2,2,1 

C1,2,3 

C1,2,1 

C1, 1 

C1 

AVC-table CS: Counting Set 

CS 
AVP 

F R A 

<Headache=no> 7 7 7 

<Headache=yes> 3 1 1 

    

<Pain=no> 4 4 4 

<Pain=yes> 6 4 4 

<Temperature=normal> 2 2 2 

    

<Temperature=high> 5 4 4 

<Temperature=very high> 3 2 2 

    

<Flu=no> 6 6 6 

<Flu=yes> 4 2 2 

C2 
F=7 
R=7 
A=7 

F=3 
R=1 
A=1 

F=4 
R=4 
A=4 

F=10 
R=8 
A=8 

C1, 2 F=3 
R=3 
A=3 

C2, 2 F=3 
R=1 
A=1 

C1,1,2 
F=4 
R=4 
A=4 

F=1 
R=0 
A=0 

F=1 
R=1 
A=1 

F=2 
R=2 
A=2 

F=1 
R=0 
A=0 

F=1 
R=1 
A=1 

C2,2,2 

C2,2,3 

F=3 
R=3 
A=3 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=0 
A=0 

F=1 
R=0 
A=0 C1,1,2,2 C1,2,3,2 

C2,2,2,2 
ULR 

C2,2,3,2 

C2,2,1,1 

C1,2,3,1 C1,2,1,1 C1,1,2,1 

C2,2,1 

C1,2,3 

C1,2,1 

C1, 1 

C1 

AVC-table 
CS: Counting Set 

CS 
AVP 

F R A 

<Headache=no> 7 7 0 

<Headache=yes> 3 3 2 

    

<Pain=no> 4 4 0 

<Pain=yes> 6 6 2 

<Temperature=normal> 2 2 0 

    

<Temperature=high> 5 5 1 

<Temperature=very high> 3 3 1 

    

<Flu=no> 6 6 0 

<Flu=yes> 4 4 2 

C2 
F=7 
R=7 
A=0 

F=3 
R=3 
A=2 

F=4 
R=4 
A=0 

F=10 
R=10 
A=2 

C1, 2 F=3 
R=3 
A=0 

C2, 2 

F=3 
R=3 
A=2 

C1,1,2 
F=4 
R=4 
A=0 

F=1 
R=1 
A=1 

F=1 
R=1 
A=0 

F=2 
R=2 
A=0 

F=1 
R=1 
A=1 

F=1 
R=1 
A=0 

C2,2,2 

C2,2,3 

F=3 
R=3 
A=0 

F=1 
R=1 
A=0 

F=1 
R=1 
A=0 

F=1 
R=1 
A=0 

F=1 
R=1 
A=0 

F=1 
R=1 
A=0 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 C1,1,2,2 C1,2,3,2 

C2,2,2,2 
ULR 

C2,2,3,2 

C2,2,1,1 

C1,2,3,1 C1,2,1,1 C1,1,2,1 

C2,2,1 

C1,2,3 

C1,2,1 

C1, 1 

C1 

AVC-table CS: Counting Set 

CS 
AVP 

F R A 

<Headache=no> 7 7 6 

<Headache=yes> 3 3 2 

    

<Pain=no> 4 4 4 

<Pain=yes> 6 6 4 

<Temperature=normal> 2 2 0 

    

<Temperature=high> 5 5 5 

<Temperature=very high> 3 3 3 

    

<Flu=no> 6 6 4 

<Flu=yes> 4 4 4 

C2 
F=7 
R=7 
A=6 

F=3 
R=3 
A=2 

F=4 
R=4 
A=4 

F=10 
R=10 
A=8 

C1, 2 F=3 
R=3 
A=2 

C2, 2 F=3 
R=3 
A=2 

C1,1,2 
F=4 
R=4 
A=4 

F=1 
R=1 
A=1 

F=1 
R=1 
A=0 

F=2 
R=2 
A=2 

F=1 
R=1 
A=1 

F=1 
R=1 
A=0 

C2,2,2 

C2,2,3 

F=3 
R=3 
A=3 

F=1 
R=1 
A=1 

F=1 
R=1 
A=0 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 

F=1 
R=1 
A=0 

F=1 
R=1 
A=1 

F=1 
R=1 
A=1 C1,1,2,2 C1,2,3,2 

C2,2,2,2 
ULR 



 

 

Table 3. Description of the data sets 

Data set 
# of ex-
amples 

# of 
attributes 

# of 
classes 

# of nodes 
in AV-space 

# of 
attribute 
values 

Flu 10 4 2 20 8 
Lenses 24 5 3 63 24 
Monks 122 7 2 379 122 
Flag 194 27 8 3024 193 
Glass 214 10 6 702 129 
Balance Scale 625 5 3 1406 625 
Credit Screening 653 16 2 3618 604 
Breast Cancer  683 10 2 3099 449 
Mushroom 5,644 23 2 17,304 5,644 
Nursery 12,598 9 5 29,403 12,960 
Adult 45,222 15 2 111,259 24,206 

 

5.2 Performance Comparison of AV-space with the 
Example Set 
We compare the performance of the AV-space with 

that of a dynamic array, the most common data structure 
used in rule induction systems. A dynamic array stores 
all the (encoded) training examples in an array structure, 
where each element of the array stores an (encoded) 
training example. The size of the array is the number of 
examples in the data set. We refer to this dynamic array 
structure as the Example-set. The time complexity of 
loading an Example-set is O(MN), where M is the num-
ber of attributes and N is the number of examples in the 
data set. With an Example-set, it takes O(N) to compute 
the significance value of an attribute-value pair during 
attribute-value pair selection. 

5.2.1 Comparison in Running Time 
We split the running time into the data set loading 

time and rule induction time. Table 4 shows both the 
loading time and the rule induction time5. Figure 8 de-
picts the percentage improvement of the AV-space over 
the Example-set in terms of the rule induction time.The 
result shows that the AV-space significantly improves the 
Example-set in terms of both the data set loading time 
and the rule induction time. The speed acceleration var-
ies among the data sets. The improvement is more sig-
nificant on large data sets. For example, on Mushroom 
and Nursery data sets, the percentage improvement in 
rule induction time is more than 85% and on the Adult 
data set it is over 65%. 

When building an AV-space, only M comparisons 
are made to load an example with M attributes. To load 
the data into an Example-set, we need to create a new 
object (i.e., a new array) when loading an example6. This 

                                                           
5 The rule induction time on a data set is the time taken for generating 
all the rules for all the classes except for the adult data set for which we 
only allow a maximum of 20 rules to be generated per class.  
6 The loading time depends on the programming language used to 
write the program. We use a vector structure in Java to hold an Exam-
ple-set in memory. If another language, such as C, is used, we may not 
need to spend time on creating new objects during data loading, but we 

is the reason why the AV-space has a shorter data loading 
time. The reason for the AV-space to have a shorter rule 
induction time is that it does not need to scan the training 
data during rule induction, while with the Example-set 
we need to do multiple scans to collect the necessary 
statistics in the data.  

 
Table 4. Data set loading time and rule induction time (in sec-
onds) in AV-space and Examples-set 

Data set Time Use AV-space Example-set
Percentage 

improvement7 
Loading 0.140 0.172 18.6%

Flu 
Rule induction 0.031 0.031 0%
Loading 0.141 0.141 0%

Lenses 
Rule induction 0.031 0.032 3.1%
Loading time 0.204 0.219 6.8%Monks 
Rule induction 0.078 0.109 28.4%
Loading 0.172 0.203 15.3%Flag 
Rule induction 0.360 0.484 25.6%
Loading 0.016 0.172 90.7%Glass 
Rule induction 0.219 0.406 46.1%
Loading 0.031 0.031 0%Balance Scale 
Rule induction 0.516 1.484 65.2%
Loading 0.187 0.203 7.9%Credit 

Screening Rule induction 0.516 1.156 55.4%
Loading 0.172 0.187 8.0%Breast Cancer 
Rule induction 0.156 0.422 63.0%
Loading 0.438 1.125 61.1%Mushroom 
Rule induction 0.297 2.859 89.6%
Loading 0.328 0.594 44.8%Nursery 
Rule induction 10.110 67.469 85.0%
Loading 1.313 3.641 63.9% Adult 
Rule induction 76.110 219.109 65.3%

 
Percentage Improvement (%)

0

20

40

60

80

100

F
lu

Le
ns

es

M
on

ks

F
la

g

G
la

ss

B
al

an
ce

S
ca

le

C
re

di
t

S
cr

ee
ni

ng

B
re

as
t

C
an

ce
r

M
us

hr
oo

m

N
ur

se
ry

A
du

lt

Data Set  
Figure 8. Improvement of AV-space over Example-set on 
rule induction time 
 

5.2.2 Comparison in Memory Cost 
Table 5 shows that on small data sets the AV-space 

uses more memory than the Example-set, but on large 
data sets it consumes smaller space. 

 

                                                                                             
need to scan the data set twice to create a dynamic array. In the first 
time, we find the number of examples in the data set. In the second 
time, we load the data into an array whose size equals to the number of 
examples in the data set. Thus, the loading time with the Example-set 
may still be much longer than the time with an AV-space.    
7 The percentage improvement is the relative improvement rate ex-
pressed as a percentage. The relative improvement rate is the difference 
between the time the Examples-set based ELEM2 takes and that the 
AV-space based ELEM2 takes divided by the time the Examples-set 
based ELEM2 takes. 



 

Table 5. Memory consumption of AV-space and Example-
set 

Data set  AV-space 
(bytes) 

Example-set 
(bytes) 

AV-space/ 
Example-set

Flu 484 384 1.26 
Lenses 1,308 908 1.44 
Monks 7,108 5,104 1.39 
Flag 56,428 24,788 2.28 
Glass 13,576 11,844 1.15 
Balance Scale 25,656 20,272 1.27 
Credit Screening 66,352 50,560 1.31 
Breast Cancer  57,236 36,616 1.56 
Mushroom 313,260 588,328 0.53 
Nursery  529,748 622,460 0.85 
Adult 2,004,836 3,257,624 0.62 

5.2.3 Comparison on Scalability  
To see how the performance of the AV-space 

changes with the size of training data, we conducted an-
other set of experiments with two data sets, Adult and 
Covtype. The original Adult data set from the UCI Re-
pository contains a training data set (Adult2 with 30162 
examples) and a test data set (Adult1 with 15060 exam-
ples). We created Adult3 (with 45222 examples) by con-
catenating the Adult1 and Adult2 data sets8.  

The speed comparisons on the three Adult data sets 
are shown in Figure 9 and the memory comparisons in 
Figure 10. The result reveals that the larger the data set, 
the more significant the improvement of the AV-space 
over the Example set on the speed of rule induction, and 
the more reduction on the memory cost.  

0

50

100

150

200

250

Adult1 Adult2 Adult3

Data set

R
ul

e 
in

du
ct

io
n 

tim
e 

(s
ec

on
ds

)

AV-space Example-set

 
Figure 9. Speed comparisons on Adult data sets 

0

1,000,000

2,000,000

3,000,000

4,000,000

Adult1 Adult2 Adult3
Data set

M
em

o
ry

 c
o
st

 (
b
yt

es
)

AV-space Example-set

 
Figure 10. Memory comparisons on Adult data sets 
 

The Covtype data set is another public data set do-
nated by the US Forest Service. In this experiment, we 
select 40 condition attributes, Soil_type1 to Soil_type40, 
and discover relationships between the condition attrib-

                                                           
8 The Adult data set used in the experiments described in the previous 
subsections is the Adult3 data set. 

utes and the class attribute, the cover type of forest. The 
data set is sparse, meaning that only a small portion of 
the possible combinations of attribute values appear in 
the data set. The original Covtype data set contains 
581,011 examples. We created 4 subsets of the data set, 
containing the first 300,000, 50,000, 10,000, and 2,000 
examples respectively. We tested the AV-space and the 
Example-set on the original data set and the 4 subsets. 
The result (see Table 6) shows that the AV-space signifi-
cantly outperforms the Example-set on this large sparse 
data set on both memory consumption and running time. 
The larger the data set, the more significant the im-
provements are. 

Table 6. Comparisons on the Covtype data set 
Number of 
examples 

Algorithm 
Memory 
(bytes) 

Loading 
time(sec) 

Rule induction 
time(sec) 

581,011 AV-space  19,588 12.469 0.109 
 Example-set 102,258,976 330.281 187.891 

300,000 AV-space 19,500 6.390 0.110 
 Example-set 52,801,040 168.735 81.843 

50,000 AV-space 18,276 1.156 0.109 
 Example-set 8,801,040 26.281 14.750 

10,000 AV-space 17,880 0.406 0.141 
 Example-set 1,761,040 4.688 3.032 

2,000 AV-space 13,468 0.203 0.109 
Example-set 353,040 1.203 0.484 

5.3 Comparison between AV-space and ADtree 
In Table 7, we compare the AV-space with the AD-

tree algorithm on the three adult data sets in terms of the 
memory cost and the building time. The results for the 
ADtree algorithm are taken from [9].9 From Table 9, we 
can see that both structures can control the growth of 
memory well, and that the AV-space consumes much less 
memory than the ADtree, and it takes much less time to 
build an AV-space than building an ADtree. Since the AD 
tree cannot handle the rule tiling problem in sequential-
covering, it can only be used to learn a single conjunctive 
rule. To learn an additional rule, another AD-tree has to 
be built from the data. Thus, its rule induction time is not 
comparable to that of the AV-space.  

 
Table 7. Comparisons between AV-space and ADtree 

AV-space ADtree 
Data 
set 

# of  
Attrib-

utes 

# of  
Exam-

ples 
Memory 
Cost (M) 

Build 
Time 

(seconds) 

Memory 
Cost (M) 

Build 
Time 

(seconds) 
Adult1 15 15060 0.9 0.515 7.0 6 
Adult2 15 30162 1.5 0.937 10.9 10 
Adult3 15 45222 2.0 1.313 15.5 15 

 

6 Analysis of Space Complexity of AV-space 
In this section, we analyze the space complexity of 

                                                           
9 Since we do not have the programs for the ADtree algorithm, we can 
only make limited comparisons based on the results reported in the 
ADtree paper. Since a slower machine was used to evaluate the ADtree  
structure (roughly 15 times slower), we adjust the building times for the 
ADtree to be 15 times faster than what was reported in [9]. 



 

the AV-space in the worst case scenario and compare it 
with those of the ADtree and the Example-set. 

In the worst case, the training data set contains all 
possible combinations of the attribute values. We assume 
that N is the number of examples in the training set, M is 
the number of attributes and k is the number of unique 
values for each attribute. In this case, the number of AV-
tree nodes at level i is ki. The total number of nodes in 
the AV-tree is ∑ =

M

i

ik
1

. Assume that the size of a node is 

four10, then the size of the AV-tree is 

1
4

1
4

*4 1

1 −
−

−
= +

=∑ k
k

k
k MM

i

i        (1) 

We do not take the AVC-group into account because 
the other structures that we compare the AV-space with 
also use a structure similar to the AVC-group during rule 
induction. Equation (1) shows that the size of the AV-
space is independent of N, which is usually much larger 
than M and k. In addition, it is usual that a real-world 
data set does not contain all the combinations of the at-
tribute values. Thus, the actual size of the AV-tree is usu-
ally much smaller than what is shown in Equation (1). 
Also, when the numbers of unique values vary among 
attributes, placing the attributes with fewer values at 
higher levels of the AV-tree consumes less space. 

Given N training examples and M attributes, the size 
of the Example-set is MN. We can prove that in the worst 
case scenario, when N > 1

)1(

4 +

−
Mk

kM
, the size of the AV-

space is smaller than that of an Example-set.  
To compare the AV-space with the ADtree structure, 

we restrict our attention to the case of binary attributes. 
Given a dataset with M attributes, in the worst case, all 
the 2M different examples appear in the training set. The 
number of AV-tree nodes is 2M+1-1. In the worst case, the 
ADtree has no ADnodes with counts of zero. Due to the 
use of the Most Common Values (MCVs), there is only 
one ADnode under each Vary node. Thus, in the worst 
case, the number of ADtree nodes is 2M, the number of 
Vary nodes is 2M-1, and the total number of nodes is 
2M+1-1. Thus, in terms of the number of nodes, the AV-
tree is comparable to the ADtree. However, an ADnode 
contains a set of attribute values (one for each attribute, 
including the * value), while an AV-tree node stores only 
three counts (not considering the pointers in both trees). 
Therefore, the size of an AV-tree can be much smaller 
than that of an ADtree. 

7 Conclusions 
Sequential-covering rule induction is one of the ma-

                                                           
10 Logically, a tree node contains three counts, a set of points to its 
child nodes and a pointer to its parents. However, in the implementa-
tion we only need to store the three counts and one pointer in a node, 
and the other pointers can be derived. Hence, the size of the node is 4.  

jor classification techniques in machine learning. Al-
though many sequential-covering systems are successful 
in generating accurate classification rules, most of them 
suffer from the problem of slow induction when the data 
set is very large. To solve this problem, we proposed the 
AV-space data structure for caching sufficient statistics of 
a data set. The AV-space can be built efficiently with one 
scan of the data set. The AV-space can answer a conjunc-
tive counting query efficiently. The process for updating 
the AV-space is also efficient. The experimental results 
showed that the AV-space leads to a significant im-
provement in the rule induction time and data set loading 
time. In terms of memory usage, the AV-space consumes 
less space than the Example-set when the data set is large, 
especially when the data set is sparse. We also showed 
that the AV-space consumes less memory than the AD-
tree, and it is faster to build an AV-space than building an 
ADtree. We are currently incorporating the AV-space into 
other sequential-covering algorithms.  

 

References 
[1]. An, A. and Cercone, N. ELEM2: A Learning System for 

More Accurate Classifications, Proc. of the 12th Canadian 
Conf. on Artificial Intelligence, Vancouver, Canada, 1998.  

[2]. Anderson, B., Moore, A.: ADtrees for Fast Counting and 
for Fast Learning of Association Rules. Proc. of the 4th 
Intl. Conf. on Knowledge Discovery in Data Mining, 1998. 

[3]. Cendrowska, J.: PRISM: An algorithm for inducing modu-
lar rules. International Journal of Man-Machines Studies, 
27:349-370, 1987. 

[4]. Clark, P., Niblett, R: The CN2 Induction Algorithm. Ma-
chine Learning3:261-284, 1989. 

[5]. Gehrke, J., Ramakrishnan, R., Ganti, V.: RainForest – A 
Framework for Fast Decision Tree Construction of Large 
Datasets. Proc. of the 24th Intl. Conf. on Very Large Data-
bases, 1998. 

[6]. Han, J., Pei, J. and Yin, Y. 2000. Mining Frequent Patterns 
without Candidate Generation, Proc. of the ACM 
SIGMOD Intl. Conf. on Management of Data, 2000. 

[7]. Komarek, P., Moore A.: A Dynamic Adaptation of AD-
trees for Efficient Machine Learning on Large Data Sets. 
Proceedings of the Seventeenth International Conference 
on Machine Learning, 2000. 

[8]. Lavra, N., Flach, P. and Zupan, B. Rule Evaluation Meas-
ures: A Unifying View, Proc. of the 9th Intl. Workshop on 
Inductive Logic Programming, 1999. 

[9]. Moore, A., Lee, M. S.: Cashed Sufficient Statistics for 
Efficient Machine Learning with Large Datasets. Journal 
of Artificial Intelligence Research, 8, 1998. 

[10]. Moore, A.W., Schneider, J. And Deng, K. Efficient Lo-
cally Weighted Polynomial Regression Prediction, Proc. of 
the International Conference on Machine Learning, 1997. 

[11]. Murphy, P. M., Aha, D. W. UCI Repository of Machine 
Learning Databases, 1994. 

[12]. Savasere, A., Omiecinski, E. and Navathe, S. An Efficient 
Algorithm for Mining Association Rules in Large Data-
bases, Proc. of the 21st Intl. Conf. on Very Large Data-
bases, 1995. 


