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Rule-Induction and Case-Based Reasoning:
Hybrid Architectures Appear Advantageous
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Abstract—Researchers have embraced a variety of machine learning (ML) techniques in their efforts to improve the quality of
learning programs. The recent evolution of hybrid architectures for machine learning systems has resulted in several approaches
that combine rule-induction methods with case-based reasoning techniques to engender performance improvements over more-
traditional one-representation architectures. We briefly survey several major rule-induction and case-based reasoning ML systems.
We then examine some interesting hybrid combinations of these systems, and explain their strengths and weaknesses as learning
systems. We present a balanced approach to constructing a hybrid architecture, along with arguments in favor of this balance and
mechanisms for achieving a proper balance. Finally, we present some initial empirical results from testing our ideas and draw some
conclusions based on those results.

Index Terms—Case-based reasoning, rule induction, machine learning, classification, numeric prediction.
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1 INTRODUCTION

ACHINE learning (ML) has evolved rapidly over the
past two decades. ML researchers have embraced

a variety of machine learning techniques in their efforts
to improve the quality of learning programs. The rela-
tively recent development of hybrid representations for ML
systems have resulted in several interesting approaches
which combine rule-induction (RI) methods with case-
based reasoning (CBR) techniques to engender perform-
ance improvements over more traditional one representa-
tion architectures.

CBR is used in learning and problem-solving systems
to solve new problems by recalling and reusing specific
knowledge obtained from past experience. RI systems
learn general domain-specific knowledge from a set of
training data and represent the knowledge in compre-
hensible form as IF-THEN rules. RI systems also often
succeed in identifying small sets of highly predictive
features, and can make effective use of statistical meas-
ures to eliminate noise in data.

We present a brief survey of several major rule-
induction and case-based reasoning ML systems that have
been deployed. We point out some idiosyncrasies of these
systems. We then examine some interesting hybrid combi-
nations of these systems and explain their strengths and
weaknesses as learning systems. Due to their comple-
mentary properties, CBR and RI techniques have been
combined in some systems to solve problems to which a
single technique fails to provide a satisfactory solution.

We explain how RI can be used in a supportative role in
ML systems that employ CBR and, likewise, how CBR has
been used in a supportative role in systems employing RI
as the major learning paradigm. We present a balanced
approach to constructing an integrated CBR and RI hybrid
architecture, along with arguments in favor of this balance
and mechanisms for achieving a proper balance. The key
to making the balance work properly is a new weighting
function which helps select relevant cases from a case base
expeditiously. Relevance weighting assesses similarities
between cases, making use of RI results to assign weights
to each attribute-value pair of the query case. Cases can
then be ranked according to their probability of relevance
to the new case, thus producing the most possibly relevant
cases for retrieval. Our method, known as ELEM2-CBR,
performs both classification and numeric prediction under
a mixed RI and CBR paradigm.

Finally, we present some initial empirical results derived
from testing our ideas, and we draw some conclusions
based on those results.

2 SURVEY

Two primary goals of machine learning are to understand
and model human learning behavior and, more pragmati-
cally, to provide increasing levels of automation in the
knowledge acquisition process. United by common goals,
ML research has emphasized different approaches. RI, neu-
ral networks, genetic algorithms, analytic learning, Baye-
sian learning, reinforcement learning, and CBR have
emerged as ML paradigms. Research into neurobiology
(neural nets), evolution theories (genetic algorithms), for-
mal logic (analytic methods), heuristic search (rule-
induction) and human memory (case-based reasoning)
have provided researchers with analogical models to study.
Langley’s review [16] describes applications of rule induc-
tion, the most widely studied methodology.

1041-4347/99/$10.00 © 1999 IEEE

²²²²²²²²²²²²²²²²

•� N. Cercone and A. An are with the Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
E-mail: {ncercone, aan}@uwaterloo.ca.

•� C. Chan is with the Department of Computer Science, University of Regina,
Regina, Saskatchewan, Canada S4S 0A2. E-mail: chan@cs.uregina.ca.

Manuscript received 16 May 1997; revised 13 Aug. 1998.
For information on obtaining reprints of this article, please send e-mail
to: tkde@computer.org, and reference IEEECS Log Number 108304.

M



CERCONE ET AL.: RULE-INDUCTION AND CASE-BASED REASONING¦HYBRID ARCHITECTURES APPEAR ADVANTAGEOUS 167

Representing knowledge in comprehensible condition-
action rules, general domain-specific knowledge is learned
from a set of training data in RI. Most RI systems conduct
heuristic search through the hypothesis space of rules or de-
cision trees. RI systems typically use a statistical evaluation
function to select attributes or attribute-value pairs for incor-
poration into the knowledge structure. Pre- or postpruning
of the knowledge structure is usually conducted to handle
imperfect or noisy training data. Many RI systems have
been applied to real-world domains to discover knowledge
from observed data. Example systems include C4.5 [21],
AQ15 [18], and CN2 [10]. Clark [9] provides an overview of
RI techniques and strategies for noise abatement. Despite
their successes, RI systems have stood accused of forming
only hyper-rectangular regions in the example space and
not recognizing exceptions in small, low frequency sections
of the space. Furthermore, rules do not represent continu-
ous functions well.

CBR represents knowledge by storing descriptions of
previously experienced, specific cases. A new case is solved
by retrieving similar past cases and adapting their solu-
tions. Common retrieval schemes employ variations of the
nearest neighbor method in which similarity metrics are
used to identify cases nearest to the current case. An over-
view of the CBR foundational issues is presented in
Aamodt [1]. Although CBR is a relatively recent learning
and problem-solving method, a number of commercial
tools have been developed. Watson [26] provides a review
of available CBR tools.

CBR can learn nonlinearly separable categories of con-
tinuous functions and CBR is incremental by nature, unlike
most inductive learning methods which have difficulty ex-
tending or refining their rule set during the problem-
solving stage. CBR, however, does have limitations: It does
not yield concise representations of concepts which can be
understood easily by humans and CBR systems are usually
sensitive to noise.

2.1 Hybrid Approaches
The complementary properties of CBR and RI can be ad-
vantageously combined to solve some problems to which
only one technique fails to provide a satisfactory solution.
Generally the combination involves CBR systems using
rule-based reasoning for support. CBR can also be used in a
support role or integrated with rule-based reasoning in
some balanced fashion.

CBR processing can be augmented with rule-based
techniques when general domain knowledge is required.
For example, adaptation tasks in the CBR processing cy-
cle are usually performed by rule-based systems where
the rules capture a theory of case adaptation and the nec-
essary aspect of the domain theory to carry out the
changes [17]. CASEY [15] is a system where case adapta-
tion is performed by rule-based reasoning in which solu-
tions to new problems are built from old solutions using
rules with the condition-part indexing differences and
with a transformational operator as the action part. Rules
can also be used to guide the search and matching proc-
esses in retrieval tasks of a CBR system. Rules regarding

the problem domain may serve to organize the case base
and, when applied, focus the search space to more rele-
vant cases. Rules may also be used in similarity assess-
ment by determining weights for attributes. INRECA [2]
builds a decision tree on the case database, weights of the
attributes, with respect to the subclasses discovered in the
tree, are computed, and class specific similarity functions
are defined based on these weights. Rule-based reasoning
can aid case retrieval by justifying a candidate set of cases
as plausible matches, e.g., knowledge-based pattern
matching (rule-based reasoning) is used in PROTOS [6] to
confirm new case expectations.

CBR can also serve in a supporting role. Unlike rules,
cases in a case base contain specific knowledge about a do-
main. When general domain knowledge is not accessible,
the specific knowledge inherent in cases can provide valu-
able information to solve problems. Because CBR can elicit
domain knowledge through its analysis of cases, CBR can
aid systems with tasks where general domain knowledge is
not available but needed.

Several RI systems have employed CBR to make use of
the information inherent in training cases support their in-
duction process. CABARET [25] uses CBR to aid a cooper-
ating inductive decision-tree-based learning algorithm with
training set selection, branching feature selection, deliberate
bias selection and specification of inductive policy. CBR is
used to form categories of a training set which include
most-on-point cases, best cases, near miss cases, trumping
cases, and conflict cases. These case taxonomies allow the
learning system to consider the various roles cases play in
addition to classification, say, as positive or negative exam-
ples. For feature selection, CABARET takes advantage of
CBR-provided domain knowledge as well as information-
theoretic methods to select branching attributes for growing
decision trees. RISE [10] induces rules in a specific-to-
general fashion, starting with a rule set that is the training
set of examples. RISE examines each rule in turn, uses CBR
to find the nearest example of the same class that it does not
already cover and attempts to minimally generalize the rule
to cover the class.

Balanced combination techniques use CBR and rule-based
techniques to support each other in a learning, problem-
solving environment, neither of which is in a purely sup-
port role. Example systems include INRECA [2], FCLS [27],
and ANAPRON [14]. INRECA performs classification by
first generating and trying a decision tree, generated from
the case base, to navigate the search for a matched or
similar concept. The generalized knowledge is also used to
improve retrieval by determining attribute weights (degree
of attribute importance for similarity case measurement)
with respect to the subclasses discovered by the decision
tree. If INRECA can answer a given query at this point,
no further action is required, otherwise their hybrid ap-
proach applies CBR when the query lies outside the in-
duced concept region.

FCLS and ANAPRON focus on hybrid representations
of a concept. In both approaches, a concept is represented
by two parts: A generalized abstract description in the
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form of rules and a set of exceptions in the form of exem-
plars.1 Since rules represent broad domain trends and cases
usefully “fill in” rule exceptions, a hybrid approach is sup-
ported. Rules and exceptions are generated with an induc-
tive learning algorithm in FCLS. Rules are induced accord-
ing to some criteria; when no acceptable rules can be gen-
erated for a concept, a set of exemplars are selected as ex-
ceptional cases of the concept. Both rules and exemplars
are used to match the new case during problem-solving.
Problem-solving in Golding et al.’s system works differ-
ently. Their system applies rules to the target problem to
approximate the answer. However, if the problem is judged
to be compellingly similar to a known exception to the rules
in any aspect of its behavior, then the aspect is modified
after the exception rather than the rule.

INRECA’s advantage lies in its incremental learning of
decision trees. Over time, more and more generalized con-
cepts can be induced based on the increasing case base.
Thus INRECA evolves from a more or less pure CBR sys-
tem to a system based on inductively learned knowledge.
INRECA does not address uncertainty, i.e., when a new
case is in the boundary region of two or more concepts and
thus is covered by rules that belong to different concepts.
FCLS addresses such conflict resolution in its hybrid repre-
sentation by computing a degree of fit between a new case
and a rule or an exemplar. FCLS, moreover, sets the feature
weights for exemplars equally, which is not desirable in
most situations. Furthermore, FCLS has only a weak abil-
ity to deal with noise. For noisy training examples, small
disjuncts (used by FCLS as exemplars) may be indicative
of data errors. Differentiating noise and boundary exam-
ples is not handled in FCLS; Golding’s ANAPRON has
similar problems.

3 INTEGRATING RULE-INDUCTION (RI) AND
CASE-BASED REASONING (CBR)

We propose a new hybrid method which integrates RI and
CBR techniques. Our ELEM2-CBR employs relevance weight-
ing to access similarities between cases, making use of RI
results to assign weights to each attribute-value pair of the
query case. Cases in the case-base can then be ranked ac-
cording to their probability of relevance to the new case.
ELEM2-CBR performs classification and numeric prediction
under a mixed paradigm of rule-based and case-based rea-
soning. After performing RI, induced rules are applied in
case retrieval to determine weight settings for features and
to detect noise in the training set for removal before CBR is
conducted. During classification, rules are applied to make
decisions; conflicts observed between matched rules are
resolved by performing CBR.

3.1 Weighting and Parameter Estimation
Feature weighting is a key issue in case retrieval. Many
case-based reasoning algorithms retrieve cases using the

1. Exceptions have different meanings in the two systems. In FCLS, an
exception represents a rare concept case, while in Golding’s system an
exception represents an example that does not agree with a rule (exception
of a rule).

k-nearest neighbor (k-NN) method with a weighting meth-
ods, such as the per-category feature (PCF) and cross-
category feature (CCF) importance measures [11]. Although
PCF and CCF can be clearly calculated, optimality determi-
nation (in any sense) remains. Furthermore, PCF and CCF
are case specific and do not take into account the query
case when assigning weights to features. Our proposed
method, relevance weighting, overcome these objections.

Cooper [8] proposed a probability ranking principle
(PRP) for information retrieval which we adapt:

“If a retrieval system’s response to each request is a ranking of
the documents in the collection in order of decreasing probabil-

ity of usefulness to the user, then the overall effectiveness of the

system to its users will be the best that is obtainable on the basis

of that data.”

Robertson [23] provided formal justification proving that
PRP leads to optimal performance in terms of retrieval
effectiveness and that PRP is the correct decision procedure
to use. Robertson and his colleagues also built an informa-
tion retrieval system, named OKAPI [24], based on PRP.
The performance of this system has been ranked at the top
places in the Text REtrieval Conference (TREC), during
which a large scale experiment/competition involving
a number of research groups working on test retrieval is
conducted [7], [24].

Considering that PRP has been both theoretically and
experimentally proven to be a correct decision procedure
for retrieval and that CBR and information retrieval share
similar goals, it is natural to invoke the PRP principal for
case retrieval. We speculate that a case in the case base is
relevant to a new case if it is useful in solving the problem
represented by the new case. For optimal case retrieval, we
restate the PRP as:

“The probability ranking principle for optimal case retrieval: If a case

retrieval system’s response to a new case (query) is a ranking of

cases in the case base in order of decreasing probability of query

relevance, where the probabilities are estimated as accurately as
possible on the basis of whatever data has been made available

to the system for the purpose of using the retrieval result to

solve the problem represented in the query, then the overall ef-

fectiveness of the system in terms of the probability of relevant

cases being retrieved will be the best that is obtainable on the

basis of that data.”

By this principle we claim that optimal case retrieval can be
achieved if the system ranks the retrieved cases in the de-
creasing order of their probability of relevance to the new
case, thus maximizing the probability of relevant cases be-
ing retrieved. To set weights for optimal retrieval, let p de-
note the probability that a query term t occurs in a docu-
ment, given that the document is relevant; let q be the cor-
responding probability for a nonrelevant document. Rob-
ertson and Spark Jones [22] show that assigning weights to
query terms with values of

log
( )
( )

p q
q p

1
1

−
−
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yields an optimal result2 if the terms are mutually inde-

pendent.3 Using this formula to assign weights to query
terms results in a ranking of documents that leads to opti-
mal document retrieval.

To achieve optimal case retrieval in CBR, suppose that a
query case qc in CBR consists of a set of attribute-value

pairs {av1, av2, L, avn}, where n is the number of attributes.

The role of attribute-value pairs avi (i = 1, L, n) in case re-
trieval is the same as the role of query terms in document
retrieval, thus we assign weights to attribute-value pairs of
qc as follows

w(avi) = log
( )
( )

p q
q p

i i

i i

1
1

−
− ,

where pi is the probability that avi occurs in an old case in
the case-base given that the old case is relevant to the new
case, while qi is the probability that avi occurs in an old case
given that the old case is not relevant. We have assumed
symbolic attributes; discretization is performed to trans-
form a continuous attribute domain into symbolic ranges.4

When cases in the case base are known as relevant or not
relevant, we calculate the weight as

w av
r N n R r

n r R ri( ) log
( )
( )( )=

− − +
− −             (1)

where there are N cases in the case base of which R cases
are relevant and the attribute-value pair avi occurs in n
cases, of which r cases are relevant. Although N and n are
easy to obtain, R and r are not normally available in ad-
vance. Thus a method is needed to estimate these two pa-
rameters to determine relevance weighting.

For classification problems, we can assume that every
case in the case base belongs to a symbolic concept. Fur-
thermore, cases relevant to a new case, i.e., useful for
solving the problem represented by the new case, are
those that belong to the same concept as the new case.
Thus, if we can estimate to which concept the new case
belongs, then the cases in the case base that belong to the

2. In their proof, the retrieval effectiveness is measured by the following

probabilities:

recall = P(document retrieved|document relevant);
fallout = P(document retrieved|document nonrelevant);

precision = P(document relevant|document retrieved).

Another parameter is:

f(di) = P(document relevant|document is di) = P(di is relevant).

Robertson and Spark Jones proved that, given expected fallout, recall can be
maximized by including in the retrieved set those documents with the
highest values of f(di). In other words, optimized retrieval can be obtained
by ranking documents in order of f(di) and applying a cut-off when the
given fallout is reached. They also claimed that expected fallout is minimized
for given expected recall, or that expected precision is maximized for given
expected recall or given expected fallout, using the same document ordering.

3. In practice, query terms may not be mutually independent. However,
research has shown that consideration of term dependencies results in a
much more complicated weighting function which requires many parame-
ters to be estimated. But the retrieval performance in terms of precision and
recall improves very little by using the complicated function [24]. There-
fore, we only adopt the simple version of the weighting function, which has
the independence assumption.

4. We use a discretization method that is similar to the one reported in
[13], in which an entropy minimization heuristic is used to discretize the
range of a continuous-valued attribute into multiple intervals.

concept are considered relevant to the new case. RI systems
can analyze data and generate classification rules from the
data. In addition, RI systems can make effective use of sta-
tistical measures to detect noise and irrelevant features. We
use RI and deduction to estimate the parameters R and r.
ELEM2 [3], [4], [5] performs RI and uses several techniques,
including post-pruning of generated rules and probabilistic
classifications to eliminate noise in the training data.

ELEM2 is applied to derive rules from the training cases.
When a new case is presented, it is matched with the rules.
If there is only one rule matched with the new case, or if
there are multiple matches but the matched rules predict
the same concept, then the cases that belong to the concept
indicated by the matched rule(s) are considered relevant to
the new case. Multiple matches where the matched rules
indicate different concepts indicate that the new case is on
the boundary region between the indicated concepts; in this
situation all cases belonging to the indicated concepts are
considered relevant. When no rules are matched with the
new case, partial matching is performed to determine
whether some attribute-value pairs of a rule match the cor-
responding attributes in the new case. A partial matching
score is calculated between the new case and a partially
matched rule. Concepts indicated by partially matched
rules compete with each other based on these scores and
cases that belong to the concept that wins the competition
are chosen as relevant cases. After the set S of relevant cases
is determined, R is assigned as the number of cases in S and
r is set to the number of cases in S that match the attribute-
value pair avi.

We now wish to use the weighting function to assign
scores to training cases to rank them in order of probability
of relevance. If all features are symbolic, given a new case q,
weights for each attribute-value pair of q are calculated ac-
cording to (1). For each case x in the case base, we assign a
score of x as the sum of the weights of those attribute-value
pairs in q that occur in x. If cases are ranked in decreasing
value of this score, then the ranking is actually a ranking of
the cases in order of their decreasing probability of rele-
vance to the new case. For cases containing continuous at-
tributes, we adjust the weight for a continuous attribute by
multiplying the absolute difference between q’s value for
that attribute and x’s value for the same attribute. Thus the
function to calculate the score for a case x becomes a simi-
larity measurement between x and q, and is stated as

Similarity(x, q) = w Simil x  qi i i
i

n

×∑  ( )
=1

, ,

where n is the number of attributes, xi is x’s value for the ith
attribute ai, qi is q’s value for ai, wi is the weight for q’s ith
attribute-value pair calculated using the new relevance
weighting method and

Simil(xi, qi) = 

0 if  is symbolic and  ;

if  is symbolic and = ;

 1 | ( )

( )| if  is continuous.

a x q

a x q

norm x

norm q a

i i i
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where norm(xi) and norm(qi) denote the normalized values
of xi and qi, respectively, and |norm(xi) - norm(qi)| denotes
the absolute value of norm(xi) - norm(qi).

3.2 Problem Solving in ELEM2-CBR
ELEM2-CBR employs the weighting and case ranking
methods discussed above and can perform both classifica-
tion and numeric prediction. Given a set of training data,
ELEM2-CBR performs RI using ELEM2 to generate a set of
classification rules for both tasks. ELEM2’s classification is
performed over a set of training data after RI and misclassi-
fied cases, considered as noise, are removed from the case
base, before CBR is performed.

If the task is to predict numeric values, problem solving
in ELEM2-CBR is basically a CBR process. Relevance
weighting and the case ranking methods discussed are em-
ployed in case retrieval. Rules generated by ELEM2 are
used to determine parameters in the weighting function.
After ranking cases in the case base according to relevance
to the new case, several of the most relevant cases are se-
lected and their solutions adapted to the new case. Our ad-
aptation procedure is simple:

1)�Select a set S of k most relevant cases to the new case q
where k is a user-defined parameter.

2)�For each case ci in S, compute a partial contribution
value of ci as PCV(ci, q) = Similarity(ci, q) � F(ci) where
F(ci) is the real decision value of case ci that is stored
in the case base.

3)�Let Sum Similarity c qi
c Si

=
∈

∑ ( , ) .

4) Compute a numeric decision value for the new case
q as:

Prediction(q) = 

PCV c q

Sum

i
c Si

( , )
∈

∑
.

ELEM2-CBR performs both deductive reasoning and
CBR for classification tasks, i.e., when the task is to classify
a new case into a category, as follows:

1)�Match the new case with the rules generated by
ELEM2.

2)� If there is a single match, i.e., only one rule is matched
with the new case, then the case is classified into the
class that the rule indicates.

3)� If there are multiple matches, but the matched rules
indicate the same class C, then the new case is classi-
fied into C.

4)� If there are multiple matches and the matched rules
indicate different classes, or if there is no match, i.e,
no rules are matched with the new case, but partial
matches exist, then rank the cases in the case base by
using the weighting method and the similarity meas-
ure described in the last section. The parameters in
the weighting function are determined by considering
as relevant cases those cases that belong to the classes
that matched rules (or partially matched rules in the
case of no match) indicate. Go to step 6.

5)� If partial matches do not exist, then rank the cases
in the case base using the weighting function with
R = r = 0 and the similarity measure described in the
last section.

6)�Select a set S of k most relevant cases from the ranked
cases where k is a user-defined parameter.

7)� If all the cases in S predict class C, the new case is
classified into C.

8)�Otherwise, for each class Yi that exists in S, compute a
decision score of Yi defined as:

DS Y Similarity c qi j
j

m

( ) ( , )=
=
∑

1

,

where cj is one of the m cases in S that predict Yi and q
is the new case.

9) Classify the new case into the concept that has the
highest decision score.

Steps 1-3 in this procedure perform deductive reasoning
to classify the new case. CBR is conducted to resolve con-
flicts between rules or to deal with partial matching. Steps
4-6 perform case retrieval to determine the set of relevant
cases needed by the relevance weighting function. Steps 7-9
perform case adaptation to determine the new case’s class
from the retrieved cases. Fig. 1 illustrates the integration of
CBR and rule-based techniques in ELEM2-CBR.

4 EMPIRICAL EVALUATION

We investigate whether ELEM2-CBR’s expected benefits
are observed in practice. We compare ELEM2-CBR with
three other case-based reasoning algorithms: CBR-NW,
CBR-PC, and CBR-CC, which are similar to ELEM2-CBR
but without an RI part. CBR-NW assigns equal weight to
every attribute; CBR-PC and CBR-CC employ the PCF and
CCF weighting methods, respectively. The programs of
CBR-NW, CBR-PC and CBR-CC are run in an incremental
learning mode,5 while ELEM2-CBR is not. We also compare
ELEM2-CBR with C4.5 [21] and OC1 [20] on classification
problems. Both C4.5 and OC1 are decision tree learning
systems. C4.5 learns axis parallel decision trees in which
tests at each node are equivalent to axis-parallel hyper-
planes in the attribute space, while OC1 builds both oblique
and axis parallel decision trees that test a linear combina-
tion of the attributes at each internal node. When running
C4.5 or OC1, default settings are used. C4.5 can generate
both decision trees and decision rules. We chose to use gen-
eration of decision rules.

We expose ELEM2-CBR to five classification problems,
each of which contains a target concept; an example in a
problem either belongs to the target concept or does not
belong. Problem 1 contains five nominal conditional attrib-
utes with four values each: 0, 1, 2, and 3. The target concept
is “if and only if any two or more of the first three attributes
of an example have value 0 or 1, then the example belongs

5. By incremental learning we mean the previously tested examples in the
testing set are used in case-based reasoning to solve problems represented
by later test cases.
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to the concept.” From the entire space of 1,024 possible ex-
amples, 256 were randomly chosen as training examples
and the remaining as the testing set. Problem 2 and Problem 3

are designed to test ELEM2-CBR’s ability to learn concepts
with nonlinear boundaries. Each problem contains two
continuous attributes representing two axes (x and y) in a

(a)

(b)

Fig. 1. ELEM2-CBR’s numeric prediction (a) and classification (b).
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two-dimensional space. An irrelevant attribute is added to
each problem to test the algorithms’ ability to tolerate ir-
relevant features. The target concepts of Problem 2 and
Problem 3 are “if ax2 + by2 � c, then the example belongs to
the concept” and “if y > ax3 + bx2 + cx + d, then the example
belongs to the concept,” respectively, where a, b, c, and d are
constants. Problem 4 is the same as Problem 3 except that
there is no irrelevant feature in the data. Problem 5 is de-
rived from Problem 4 by randomly adding 5 percent classifi-
cation noise into the training set. For each problem, a set of
examples is chosen from the instance space, one-third of
which are used as the training set and the reminder consti-
tutes the testing set.

The results of the experiments on each problem in terms
of classification accuracy on test sets are shown in Table 1.
The best result for each problem is highlighted in bold-
face. From Table 1, we note that ELEM2-CBR and C4.5
perform perfectly on Problem 1, while the three pure CBR
algorithms do not perform well. This is because the
concept in Problem 1 has “rectangular” boundary regions
and rule-induction algorithms are good at learning and
representing these kinds of concepts, while pure CBR
algorithms are not. Regarding the remaining four prob-
lems, ELEM2-CBR performs better than C4.5 which
learns axis-parallel decision rules. This result is consistent
with what we expected: Rules are not good at representing
concepts with nonlinear boundaries. In Problem 4, CBR-NW
performs the best among the algorithms. The reason for
this is that there is no irrelevant feature or noise in
this problem and the two features are equally im-
portant. OC1 performs well on Problems 2 and 4, but
not well on the other problems. We surmise that the
oblique decision trees generated by OC1 do not well rep-
resent the axis-parallel categories in Problem 1 and OC1’s
ability to handle noise is not as good as ELEM2-CBR
and C4.5. In addition to artificial domains, we have also

experimented with six real-world datasets from the UCI
repository [19], for which the underlying concepts are un-
known. Table 2 reports the results of leave-one-out evalua-
tion on the six datasets.

To evaluate ELEM2-CBR’s ability to predict numeric
values, we have conducted experiments with CBR-CC,
CBR-PC, CBR-CC, and ELEM2-CBR on four designed nu-
meric prediction problems and three real-world problems
from the UCI repository. Definitions of the designed prob-
lems are as follows:

NP1 : f(x, y, z) = x2 + y2 + z2;

NP2 : f(x, y) = loge(x) + loge(y); and

NP3 : f(x, y) = sin-1(x) + cos-1(y).

NP4 is derived from NP1 by randomly adding 5 percent
prediction noise into the training set. For each problem, a
set of examples are selected from the domain. One-third of
the examples are randomly selected as training examples
and the remaining examples selected as test samples. For
each problem, the average of the relative errors made by
each tested algorithm over the testing samples is reported
in Table 3. Boldface is used to indicate the best result on
each problem. The results of leave-one-out evaluation on
three selected real-world datasets, housing, imports-85, and
machine, are also shown in Table 3.

5 CONCLUSIONS

We briefly summarized the salient features of rule-induction
and case-based reasoning systems in the context of machine
learning. We presented an extremely abbreviated survey of
several of the more popular contemporary RI and CBR
systems, including several which purport to be hybrid ar-
chitectures of the two representations. We then presented
ELEM2-CBR, a new method to integrate RI and CBR in
which either method can be use to support the other; nei-
ther method need be in a sole support of supporting role.

TABLE  1
PERFORMANCE COMPARISON ON DESIGNED CLASSIFICATION PROBLEMS

TABLE  2
PERFORMANCE COMPARISON ON REAL-WORLD CLASSIFICATION PROBLEMS

* The OC1 program is not applicable to the tic-tac-toe data set because the program takes only numeric valued attributes.
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We explained our novel feature weighting function for
case retrieval and our problem-solving procedures for both
classification and numeric prediction. Our experiments
have shown that ELEM2-CBR outperforms three other pure
CBR systems, especially in learning concepts with hyper-
rectangular boundaries or when the data set has irrelevant
features or noisy training cases. In terms of learning non-
hyper-rectangular regions, ELEM2-CBR also outperforms
C4.5 and an oblique decision tree learning system, OC1.

Our experiments also indicate that ELEM2-CBR is doing
much better than other methods in some of the datasets,
such as “glass,” “heart,” and “machine,” but not in all. We
surmise that the performance of ELEM2-CBR is related to
the properties of the data set. We will investigate this rela-
tionship in the future, i.e., the relation between ELEM2-CBR
and the nature of problems. Additional experiments with
feature weighting and considerations of other novel learn-
ing strategies and methods to include in future hybrid ar-
chitectures are planned.
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