
Grid Resource Discovery using Small World Overlay Graphs

Kashif Ali
Department of Computer
Science and Engineering,

York University
Toronto, ON, Canada

e-mail: kashif@cs.yorku.ca

Suprakash Datta
Department of Computer
Science and Engineering,

York University
Toronto, ON, Canada

e-mail: datta@cs.yorku.ca

Mokhtar Aboelaze
Department of Computer
Science and Engineering,

York University
Toronto, ON, Canada

e-mail: aboelaze@cs.yorku.ca

Abstract

Computational grids are believed to be an effective and
scalable solution to the problem of resource sharing
over large, heterogeneous networks of computing devices.
Since grids are highly distributed in nature, one of the
most challenging problems is the discovery of dynamic
resources in a grid. In this paper we use ideas from P2P
systems to propose a solution for the problem. Specifi-
cally, we classify nodes as consumers and producers, de-
pending on whether they consume or produce more jobs.
Our algorithm connects all producer nodes using a over-
lay network that is a small-world graph (the graph is
produced by adding “shortcut” chords to a circle). The
consumer nodes hang off the small world graph. The
producer nodes are forced to take part in resource cata-
loging and discovery. This has three distinct advantages
– first, it prevents “freeloading” by forcing producers to
do useful work; second, it frees the consumers to only
do computations; third, the low diameter of the over-
lay graph ensures that all resources are within a small
number of hops.

We simulate and evaluate the performance of our al-
gorithm in realistic traffic conditions. We evaluate the
performance of our algorithm using metrics like the av-
erage time to answer the query, the average number
of requests that were dropped and the average number
of hops traveled by query packets. Our experiments
show that our algorithm performs well with thousands
of nodes.

Keywords— Computational grids, P2P system, re-
source discovery, overlay graph, small world networks.

1. Introduction

Computational grids are a scalable, distributed infras-
tructure for sharing large number of heterogeneous re-
sources (CPU/memory/disk space) in a distributed net-
work for cooperative problem solving. Grids allow com-
puting devices with different computational and com-
munication resources to collaborate on solving problems,
and function as a distributed supercomputer. While the
basic idea behind grids has existed for decades, there has

been a recent surge in designing user-friendly middle-
ware (often called gridware or grid engines)for allowing
widespread use of grids. In [3], the Grid problem was
defined as “flexible, secure, coordinated resource sharing
among dynamic collections of individuals, institutions,
and resources . . . ”. Thus, grids need to solve several
problems, including the discovery of resources, authenti-
cation and authorization of messages/jobs, and schedul-
ing of resources. In this paper, we propose solutions for
the problem of discovering resources and matching jobs
to compatible resources. The highly distributed and
dynamic nature of grids makes the resource discovery
problem far more challenging than traditional parallel
computers or computer networks.

1.1 The resource discovery problem

Since a grid is made of heterogeneous resources, not
all nodes on the grid can support a given job. There-
fore, a job must first find a processor with compatible
resources before it can begin execution. The situation
is complicated by the fact that the resources in the net-
work change dynamically over time, due to nodes joining
or leaving the network. Note that a solution to the re-
source discovery problem necessary but not sufficient –
another problem that must be solved is scheduling – for
example, suppose that only two nodes in the network
are compatible with a job. Therefore, the job must find
one of the two processors, but then it should (ideally)
go to the one that would allow it to finish earlier. It
would make little sense if it queued up at one that is
backlogged if the other is currently idle. We focus on
the resource discovery problem in this paper and defer
the scheduling problem for future work.

1.2 Grids and Peer-to-Peer systems

Computational grids have significant similarities and
differences with another class of popular distributed sys-
tem that is used (primarily) for sharing files, viz., Peer-
to-Peer (henceforth called P2P) systems. The main sim-
ilarities are that in both cases the network changes dy-
namically due to nodes joining and leaving the network.
This makes maintaining centralized global views of the
network unrealistic in both cases. The main difference

0-7803-8886-0/05/$20.00 ©2005 IEEE
CCECE/CCGEI, Saskatoon, May 2005

1010 Authors Absent - Paper Not Presented

is the fact that the resources being shared change dy-
namically for grids but not P2P systems. For example,
a peer that has a file to serve requests for that file at
any time, but a node whose hard disk is used up by a
job cannot accept another job even though it may sat-
isfy the processor memory and other requirements of the
new job.

While they started as completely disjoint streams of
research, grids and P2P systems have converged in many
respects (see [2] for one account). We believe that the
solutions to several problems for the grid can be con-
tained by studying similar problems for P2P networks.
The major issues that need to be addressed in both grids
and P2P networks include

Indexing of resources: P2P systems can be unstruc-
tured or structured – the former do no indexing and
locate resources by exhaustive search, while the latter
tries to maintain distributed databases of all resources
(files) currently in the system.
Load balancing : It is desirable to balance load across
different peers when choosing a peer to satisfy a given
request. This alleviates both computational and net-
working loads in the system.
Freeloading : Measurement studies have shown that a
majority of users join P2P networks to download files
but do not share any files of their own. This phe-
nomenon (called freeloading or free riding) drains re-
sources and needs to be discouraged.

1.3 Related work

Several fully decentralized resource discovery algo-
rithms were proposed and evaluated in [4]. Our work
improves on this paper by organizing the nodes in a
way that makes resource discovery problem easier.

There has been a lot of research on P2P networks
in recent years. We refer the interested reader to the
excellent tutorial [8].

In [5], the authors propose a P2P approach to resource
discovery. Unlike our work, however, they do not impose
any overlay network. Instead, they investigate several
request forwarding strategies by peers.

In [6], the authors assume that small world graphs
exist due to user actions (and show that this is in-
deed true in some P2P systems) and investigate different
techniques for storing directory information and locat-
ing files. However, they do not address the question
of explicitly building overlays that possess small world
properties.

1.4 Our contributions

The contributions of this paper are as follows.

• We propose to structure the grid using a small-world
overlay graph that has several advantages, including

prevention of freeloading and efficient resource discov-
ery.
• We develop a very accurate simulation platform for
evaluating the performance of resource discovery algo-
rithm under realistic network conditions.

2. Overlay graph construction

In this section we describe the design issues for overlay
construction and the solutions we propose in this paper.

2.1 Design issues

The main design issue that we faced when designing
an overlay network was the choice between a structured
versus an unstructured overlay. We felt that many com-
monly used structured overlays, including distributed
hash tables (DHTs) were not suitable for our purposes
since the resources in a grid were more varied in a grid
and also varied greatly with time. On the other hand,
it was desirable to have some structure as that would
improve the efficiency of resource discovery algorithms.
Based on these considerations, we chose to have a struc-
tured overlay that is not based on partitioning and shar-
ing the address space of resources as DHTs are. Instead,
our overlay graph is maintained to be a low-diameter
network in which searching is more efficient than in un-
structured networks.

Our overlay design reduces the effect of freeloading
in the following way. We classify (dynamically) nodes
into two classes – producers (who produce jobs) and con-
sumers (who consume or execute the jobs). If a node
currently classified as a consumer has not executed at
least f(W) jobs in the last W timesteps, then we change
its class to producer. We assign resource discovery tasks
to producers but not to the consumers. This makes
freeloading nodes do useful work for the system.

Bootstrapping, or finding a node to connect to the sys-
tem, is a nontrivial problem for most distributed P2P
systems. However, we can avoid that problem for grid
applications by requiring that a small number of nodes
remain in the grid overlay at all times. This is a reason-
able assumption in grids (unlike P2P systems). These
nodes (called constant nodes) can have their addresses
published and distributed, thus solving the bootstrap-
ping problem. In order to alleviate their load, we allow
constant nodes to pass on any jobs it gets to consumer
nodes.

2.2 Topology

Our overlay construction is the dynamic version of a
well-known algorithm for generating small world graphs,
which are a family of graphs with several nice proper-
ties, most notably low diameter and low average degree.
Small world graphs have been found to be important in

1011

many different domains. We refer the interested reader
to [9] for details.

The constant nodes allow the overlay graph to ex-
ist at all times. The overlay graph has the core nodes
(the producers and the constant nodes) organized in a
ring, and consumer nodes “hang off” the ring. Constant
nodes also store the relevant state information needed
to classify nodes.

In order to maintain the small diameter property, sev-
eral extra edges are added to the circle. In addition to
each node having edges to its previous and next nodes
on the circle, there are two more types of edges:
local edges: these go from node i to i+2, i+3, . . . , i+k.
shortcut edges: these go from i to some randomly cho-
sen node. These edges are responsible for greatly lower-
ing the diameter of the network.
In addition, each core node maintains pointers to a set
of consumers. For simplicity, all edges are bidirectional
in our overlay.

2.3 Join and leave protocols

As mentioned, a node contacts a bootstrap node and
declares itself to be a producer or consumer. It is then
connected to the overlay accordingly. Our system trusts
incoming nodes to make the correct declaration. Since
nodes are classified dynamically, the nodes cannot ben-
efit much from false declarations.

An incoming node is directed by the constant node it
contacts to a random location in the ring and it joins the
overlay at that location. It then constructs local edges
using its neighbors and shortcut edges randomly. Our
current design does not require that nodes share its list
of consumers. Instead, core nodes cache requests and
build up “experience” by caching the results of queries
over time. We plan to implement explicit sharing of
consumer lists in future.

When a consumer node leaves, it informs all its neigh-
bors so that the latter can update their edge lists. When
a producer node leaves, it also informs its neighbors. It
then passes its list of consumers to a constant node, who
assigns them randomly to nodes. We do not require de-
parting nodes to hand over their “experience” to other
node.

The dynamic changing of status of consumer and pro-
ducer nodes is done very simply by treating each status
change as a leave and immediate join by the same node
but with a different status. We note that the status
changes have significant overhead costs both in terms of
storage/maintenance of state at constant nodes as well
as network traffic due to updating the constant nodes.

3. Resource discovery algorithm

We designed our system to be a testbed for evaluating
new resource discovery algorithms. In this paper, we

look at two very simple algorithms. The first one is
a simple randomized algorithm that operates as follows.
Each resource discovery query is given a hop-count limit
and routed to a random neighbor. The process goes on
until the hop count is exceeded or some node responds
indicating that it has the resources being asked for.

While such a simple algorithm may not perform well
for many graphs, especially sparsely connected ones, we
expect it to benefit from the inherent structure of small-
world networks. Specifically, since all nodes are within
a small number of hops from each other and the average
node degree is low, the chances of successfully locating
resources should be significantly higher than in tradi-
tional graphs.

The second algorithm we use is the above algorithm
supplemented with the caching of successful queries.
This is done simply by sending the query response along
the same path it used to arrive. When a query exceeds
its hop count, a message is sent to the source using the
path of the query. This scheme requires that core nodes
must store some state information about the queries
while it is being routed. High values of the hop count
would result in a large amount of state information while
a small value would decrease the likelihood of success.

4. Accurate simulations

One of the objectives of this work was to develop a
testbed for fine-grained simulation of resource discovery
algorithms. Most resource discovery simulators in the
literature do not model the underlying network in terms
of topology and do not simulate low level network phe-
nomena (e.g., packet losses, delays). We felt it is impor-
tant to simulate the network, since some resource discov-
ery algorithms (especially those using flooding) can add
significantly to the network traffic, and affect the delay
in getting query responses. We chose to use the BRITE
package [7] for generating Internet-like topologies for the
underlying physical connection graph. We chose to im-
plement our simulator on top of the well-known network
simulator ns-2 [1]. While this complicates the implemen-
tation in some ways, it gives us implementations of most
protocols in the TCP/IP architecture. An unexpected
disadvantage that we observed was that ns consumes a
lot of overhead and severely limits the scalability of our
simulations.

5. Performance evaluation

This project is work in progress and some aspects of
the system have not been implemented yet. In this sec-
tion we outline the status of our work and present per-
formance evaluation of the currently implemented parts.

Among the features we have not implemented yet are
node failures or abnormal terminations. We are also

1012

TABLE I

Simulation results: Random

Random

of successful queries 67.4%
Ave. path length 5.5

Ave. response time 0.285
Ave. queries dropped/node 0.95

testing the implementation of the dynamic classification
of producers and consumers. Hence the results in this
section are for situations where producers keep produc-
ing jobs and consumers keep accepting and executing
jobs.

We evaluate the performance of our algorithm using
simulation. We compared the performance of our algo-
rithms using metrics like the average time to answer the
query, the average number of requests that were dropped
and the average number of hops of query packets.

The following results were obtained by simulating 500
nodes for 500 timesteps. The interarrival time for re-
quests was 20. We had 5 constant nodes. The others
were producers and consumers with equal probability.
We allow every node to generate jobs, and therefore ev-
ery node generated 25 jobs on average in the period
simulated. The underlying graph was generated by the
ASWaxman module of the BRITE package. Each node
randomly chooses a set of resources on joining. Queries
were generated for random resources.

TABLE II

Simulation results: Random with caching

Random with caching

successful queries 69.13%
Ave. path length 5.29

Ave. response time 0.346
Ave. queries dropped/node 0.88

The two tables show that both algorithms world rea-
sonably well. Random with caching has a slim advan-
tage in getting a higher percentage of queries routed
successfully while Random provides a slightly faster re-
sponse time.

Although the above results are for 500 node networks,
we could run simulations for upto 2000 nodes. Beyond
that the time as well as resources used by ns became
prohibitive.

6. Conclusions

In this paper, we proposed a solution to the resource
discovery problem in computational grids. We organize

the nodes dynamically in a small-world overlay graph
that forces every node to contribute computational re-
sources (CPU/memory/disk space) to the grid. Our
overlay graph has the nice properties of having low av-
erage node degree and low diameter. This allows our
resource discovery algorithms more efficient. We simu-
lated and evaluated our algorithm under realistic net-
work and traffic conditions. Our experiments show that
our algorithm performs well and scales to thousands of
nodes. We are currently in the process of extending
the simulator to handle the scheduling and execution of
jobs.

Acknowledgments

The last two authors were supported by NSERC dis-
covery grants.

References

[1] The network simulator: ns-2. Available at http:

//www.isi.edu/nsnam/ns/.
[2] I. Foster and A. Iamnitchi. On death, taxes, and the

convergence of peer-to-peer and grid computing. In
Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS’03), February 2003.

[3] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organiza-
tions. International Journal of Supercomputer Ap-
plications, 15(3), 2001.

[4] A. Iamnitchi and I. Foster. On fully decentralized
resource discovery in grid environments. In Inter-
national Workshop on Grid Computing, November
2001.

[5] A. Iamnitchi, I. Foster, and D. C. Nurmi. A peer-
to-peer approach to resource location in grid envi-
ronments. In Proceedings of the 11th Symposium
on High Performance Distributed Computing, Au-
gust 2002.

[6] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-world
file-sharing communities. In Proceedings of Infocom
2004, March 2004.

[7] A. Medina, I. Matta, and J. Byers. Brite: A flexi-
ble generator of internet topologies. Technical Re-
port BU-CS-TR-2000-005, Boston University, 2000.
http://www.cs.bu.edu/brite.

[8] K. Ross and D. Rubenstein. Tutorial on
P2P systems, 2004. presented at IEEE INFO-
COM, http://cis.poly.edu/~ross/tutorials/

P2PtutorialInfocom.pdf.
[9] D. J. Watts. Small Worlds: The Dynamics of Net-

works Between Order and Randomness. Princeton
University Press, Princeton, 1999.

1013

