
An FPGA Based Low Power Multiplier for FFT in
OFDM Systems Using Precomputations

Mokhtar Aboelaze
Dept. of Electrical Engineering and Computer Science

Lassonde School of Engineering
York University

Toronto ON CANADA

Abstract— OFDM is considered to be the technology of choice
for many wireless and wire-line transmission systems. OFDM is
the standard for IEEE802.11, digital audio and video broadcast,
and DSL broadband internet access. The generation of orthogonal
frequencies in OFDM is done by using Inverse Fourier Transform
and implemented as IFFT. IFFT (for transmission) and FFT
(for receiving) are considered to be very computationally intensive
applications. In this paper we introduce a new multiplier for
performing FFT (since both FFT and IFFT require the same
computation structure, we will use FFT to refer to both of them).
First, we use fixed point FFT instead of floating point. The BER
due to noise and multipath is studied as a function of the number of
bits chosen to represent data in the system. Then, we introduce an
FPGA based multiplier using precomputations to be used in FFT.
Our proposed multiplier requires less energy and consumes less
resources on the FPGA chip compared to a standard fixed point IP
core by Xilinx. The proposed architecture is implemented on FPGA
using Xilinx Spartan 6 architecture and compared to the traditional
implementation of the FFT (IP multiplier by Xilinx). Our proposed
multiplier shows a decrease of 50% energy consumption and uses
less FPGA resources than a standard IP multiplier.

I. INTRODUCTION

OFDM is the dominant technology in many communication
systems such as ADSL and Wireless communication. OFDM
is used in IEEE802.11 and IEEE802.16m. It is also the main
standard in digital audio broadcasting and digital terrestrial TV
broadcasting in Europe (DVB-T and DVB-H). For example,
IEEE802.16 require OFDM symbol rate of 1.75-20MHz and
require performing up to 2048 point FFT per symbol.

There have been a lot of work in designing FFT processors
and accelerators in order to speed the computation and to
decrease energy consumption. Energy consumption is particu-
larly important for hand held devices, since it determines the
battery life. In this section, we briefly review some of the work
in FFT processors.

A multipath delay commutator structure is introduce in
[4] to increase the throughput of radix-2 and Radix-4 FFT
computation. The author proved that their architecture can
improve the throughput by a factor of 2-4 and decrease the
latency by a factor of 2-3 for large N FFT computation.

[3] presents a novel VLSI architecture for pipeline FFT.
The proposed architecture can produce the normal output
order sequence of the FFT. The proposed design utilizes the
decimated dual-path delay feedforward data commutator. The
architecture can achieve full hardware efficiency. Also a new

sequence converter is integrated into the last stage of the FFT
computation.

In [17] the authors proposed two optimized implementa-
tion of pipelined FFT processors. They investigated different
optimization techniques and different rounding schemes and
their effect on the SNR. They implemented R22SDF and
R4SDF using both Xilinx Spartan-3 and Virtex-4 FPGAs. The
achieved a maximum clock rate of 219.2 MHz.

A reconfigurable systolic array for DSP functions is pro-
posed in [7]. The proposed architecture utilizes coarse-grained
processing elements that can be configured to implement a
wide variety of signal processing algorithms (DFT, IDFT,
polyphase FIR, phase shifter, . . .). Their architecture is re-
configurable in real time and configuration data can be loaded
without interrupting the circuit operation.

In [16] the authors proposed a new CORDIC algorithm and
a new architecture for FFT. They mentioned that their design is
suitable for variable length FFT. They synthesized their design
using 0.18µ technology. Their design runs at 222MHz clock
and consumes 26.75 mW.

In [8] the authors proposed an FFT processor for 4x4
MIMO-OFDM that is capable of performing 64 and 128 points
FFT. They used a Radix 4 Multi-path Delay Commutator
(R4MDC). They also used a mixed-radix FFT implementation.
They synthesized their architecture using 0.18 µ technology
using standard CMOS processing. Their results show improve-
ment of 80% and 64% compared to R23SDF and R4MDC
architectures respectively.

In this paper, we concentrate on efficient design of the multi-
plier used in calculating FFT for OFDM. Since multiplications
in FFT is performed by multiplying the twiddle factors by the
data sequence, we show that we can optimize our multiplier
according to the number of bits required in representing the
twiddle factor. Finally we compare our design from the chip
area on the FPGA chip and energy consumption points of view
to existing multipliers.

We summarize our contribution in this paper as follows
• We characterize the effect of the word size on BER for

both white Gaussian noise and inter symbol interference.
• We propose a multiplier architecture based on precompu-

tation that consumes less energy than a standard IP based
multiplier by Xilinx.

• We implement our design on a Virtex-6 FPGA and
calculate the power saving

24978-1-4799-0698-7/13/$31.00 ©2013 IEEE ICTC 2013

The organization of the paper is as follows: Section II
presents OFDM and explain why it is a popular choice for
modern communication. Section III presents the effect of the
word-length of fixed point calculation of FFT on the OFDM
performance. Section IV discusses power saving techniques.
Section V presents the precomputation based multiplier we
used to implement FFT. Section VI provides an FPGA imple-
mentation of our proposed multiplier and compares it with the
IP fixed point multiplier supplied by Xilinx. Section VII is a
conclusion and future work.

II. OFDM

OFDM is not a new technology, it was proposed first in [2]
as a transmission technique to reduce the required bandwidth.
It was not practically implemented because of the complexity
of the scheme. In 1971, Weinstein and Ebert [14] proposed
the use of DFT to generate the orthogonal subcarrier. It was
not until the huge advances in digital electronics that allowed
the implementation of such a system.

The main idea of OFDM is to divide a high bit rate data
stream into many parallel low bits data streams using multi
carrier transmission. Figure 1 shows a regular FDM system
where the data is divided into streams and each stream is mod-
ulated by a different carrier. The different carrier frequencies
f0, f1, ...fn−1 must be separated by some frequency band to
minimize interference between different carriers. That is one
of the main drawbacks of the regular FDM communication
systems. In such a system, where we use N carriers, the
symbol length in case of multi carriers could be N times the
symbol system if we use a single carrier for modulation. It
turns out that this is very important in wireless communication
since it could be used to combat multipath fading.

One of the major impediments of wireless communication
is multi-path delay. In wireless communication signal might
reflects or refracts then it will be received by the receiver. More
than one path can be taken by the signal to reach the receiver,
each path has a different delay. The receiver receives multiple
signals delayed by different values, that leads to intersymbol
interference (ISI). if the data rate is high, which means the
symbol period is short, the ISI might affect a big part of the
previous symbol which leads to error. In case of FDM (or
OFDM) the signal period is N times the signal period in single
carrier systems, which means the ISI will be limited to a small
part of the signal period resulting in less errors. Moreover, by
introducing a guard time between the different symbols, that
will further reduce the effect of ISI.

Another impediment is frequency selective fading. OFDM
is known to be very effective in combating frequency selective
fading. In a large bandwidth signal, By dividing the wideband
signal into many narrowband signals, each narrowband signal
is subjected to flat fading which could be dealt with through
error coding and simple equalization.

For FDM transmission, we have to leave frequency bands
between the different carriers in order to reduce inter carrier
interference. That leads to wasting bandwidth by introducing
unused frequency bands between the carriers. if the carriers
are orthogonal to each other, there will be no inter carrier

interference since the effect of any of the carriers on the
rest is zero (orthogonal to each other). One way to achieve
orthogonality if all the carrier frequencies are multiple of
some basic frequency. However having N oscillators (N could
be in the hundreds or even thousands) tuned to orthogonal
frequencies is not an easy solution for the problem.

Fig. 1. FDM transmitter

OFDM solves this problem by replacing modulating the
signal using N different frequencies by calculating the IFFT
of the N signals to be transmitted. Thus, changing the signal
from the time domain to the frequency domain. By changing
the signal from the time domain to the frequency domain
using IFFT, That guarantees orthogonality, and at the same
time could be achieved easily by using DSP. Figure 2 shows
a very simple OFDM transmitter. The actual transmitter is
more complicated, we only show the relevant parts (IFFT)
and the main idea of the OFDM transmission. The OFDM
transmission could be done by

1) First the data is encoded using any encoding technique
(usually QAM).

2) Encoded symbols are serial to parallel converted. The
incoming data are split among N different streams.

3) Calculate the IFFT of N symbols from the N streams.
4) The output of the IFFT is sampled and transmitted one

sample after the other.

Fig. 2. OFDM transmitter

The output of the IFFT is the frequency domain represen-
tation of the N signals corresponding to the data symbols
d0 d1 ...dn−1. These signals are transmitted sequentially
(mainly D/A conversion). The transmitted signal is a frame of
length NT0 where T0 is the time it takes to send the original
data without OFDM.

25

In order to avoid multi-path fading frames are separated by a
time equal to the maximum difference between any two path
delays. Peled and Ruiz in [11] proposed using cyclic prefix
which maintains the orthogonality propoerty by filling the
guard period with a copy of a portion from the beginning of the
frame as shown in Figure 3. By using the cyclic prefix frames
are separated by a distance equal to the maximum difference
in propagation delay without sacrificing orthogonality.

Fig. 3. OFDM frame

The receiver works in a similar but reversed way. The
different symbols are received and A/D converted. Then FFT
is performed on the N received signals, then a QAM decoder
is used to generate the data.

III. FIXED POINT FFT

With the proliferation of wireless hand held devices, Energy
consumption has become a major design issue. While in
desktop and non-wireless application energy concerns affect
the energy cost, cooling, and reliability, in hand-held devices
battery life is added to that mix. FFT calculation is one of the
major energy consuming parts of the OFDM sender/receiver.
The FFT (DFT in general) is represented as

X(k) =
N−1∑
i=0

x(i) e−j2πik/N (1)

Generally, in embedded application and in energy-sensitive
application the FFT calculation is implemented using fixed
point instead of floating point representation. Fixed-point
requires less energy (and less chip area) than floating point
implementation, however it suffers from less accuracy and
much less dynamic range. If the range of data is known
beforehand, dynamic range is not a major problem. In OFDM
transmitter, the input of the IFFT is the output of QAM
(Quadrature Amplitude Modulation). If we know the scheme,
the range of data is limited and is known beforehand.

usually floating point numbers are represented in Qm.n
notations. The number will be represented by m + n + 1 bits.
m bits to represent the integer portion, n bits to represent the
fraction part, and one bit for sign. For example Q3.4 number is
represented by 3 bits for the integer part, 4 bits for the fraction
part, and one bit for sign for a total of 8 bits. if the number
has 0 bits for integer part (fraction number only) Q.m format
is usually used. In case of OFDM transmitter, the input to the
IFFT is usually the output of a QAM modulator. That means
we know the range of inputs to the IFFT. Ideally the input of
the FFT in the receiver is the output of the IFFT unit and the
added noise. That makes the choice of the Qm.n easy since
we know the range of values to represent.

Fig. 4. Simulation block diagram

We simulate an OFDM transmitter/receiver to determine
the loss of accuracy due to fixed-point representation. In our
simulation we considered only the effect of fixed point repre-
sentation on the accuracy. Our simulation ignored interleaving,
coding, and channel estimation.

Figure 4 shows a block diagram of our simulator. The bit
stream is modulated using 16-QAM. The output of the QAM
decoder is converted to N parallel streams (In our simulation
and implementation we used N = 64). The N parallel signals
then changed from time domain to frequency domain using
IFFT. The output of the IFFT is converted to analog and
transmitted through the channel. The channel can introduce
white Gaussian noise and multipath fading. Although multi
path fading is dealt with using cyclic prefix, we simulated
some multi-path fading since the cyclic prefix might not com-
pletely eliminate multipath fading. We simulated our system
using MATLAB and using both floating point representation
and fixed-point representation. The figure of merit is Bit Error
Rate (BER).

In our simulation, we used 16–QAM modulation with FFT
sizes of 64. Since we used 16-QAM, the range of the QAM
modulator output values are limited to ±3. That means the
integer part of the fixed point representation should be 2 bits.
The number of bits in the fraction part will determine the
performance.

Figures 5,6,7 show the bit error rate (BER) vs. the sig-
nal to noise ratio (SNR) for single precision floating point
numbers and fixed point representation. We considered only
white Gaussian noise. Figure 5 shows the BER for Q2.9
representation (a total of 12 bits and 9 bits for the fraction
part. Figures 6 and 7 show the BER for fraction bits of 8 and
7 respectively.

As shown in these figures, the BER is almost identical up
to SNR of 16 dB. After 16 dB we notice a difference of
about 0.5 dB for floating point representation over fixed point
representation.

Another issue is multipath fading. In wireless communica-
tion the propagating signals might be reflected off buildings
and propagates to the same receiver. The receiver will receive
the direct signal and extra delayed copies from the reflected
signals. The cyclic prefix is suppose to take care of this by

26

Fig. 5. BER vs. SNR for format Q2.9

Fig. 6. BER vs. SNR for format Q2.8

introducing guard bands to eliminate the multipath fading.
however if the cyclic prefix is not long enough, there might
be some multipath interference.

It is difficult to quantize the effect of multi-path fading.
Not only because cyclic prefix is suppose to take care of
multipath fading, but also because there is an infinite number
of possibilities. However just to conceptually illustrate the
effect of fixed-point FFT we included a very small subset
of BER as a function of multipath fading. In our simulation
we sampled the signal at the rate of 40 samples/symbol time.
For the multipath fading, we assumed an attenuation of 3dB
and a path delay of multiple of 2.5% of the symbol time.
Table I shows the bit error rate as a function of delayed signal
(one delayed signal with 3dB attenuation). The overlap due
to the multipath fading is between 2.5% and 12.5% in 2.5%
increments.

As we can see from Table I for the values that we reported
here the effect of fixed-point FFT on BER is minimal. Even
sometimes it has a better performance than fixed point rep-
resentation. Most probably that is because of the simulation
limitation rather than any intrinsic added value because of the
fixed point representation.

Fig. 7. BER vs. SNR for format Q2.7

TABLE I
THE EFFECT OF MULTIPATH FADING ON BER

Multipath fading floating point FFT Fixed point FFT

Q2.9

2.5% 0 0
5% 0.0618 0.0620
7.5% 0.0786 0.0795
10% 0.1871 0.1862
12.5% 0.2426 0.2422

IV. POWER REDUCTION TECHNIQUES

Power reduction techniques are numerous, and there is no
way that we can cover them all here. We only review the use of
precompuation techniques to reduce power. We also mention
multiplier sharing techniques. Multiplier sharing is different
than precomptation, however this research started using mul-
tiplier sharing scheme and ended up using precomputation.

Precomputation [1] is a technique used to reduce dynamic
power consumption. Their technique depends on calculating
the output value of the function using only a subset of the
inputs. if the output can be calculated using this subset of
inputs, parts of the circuits are turned off (disabled). Disabling
parts of the circuits will reduce the switching activities that
could have happened in this part thus reducing the dynamic
power. The authors in [1] proposed a method to automatically
synthesize precomputation logic to reduce power consumption
in the circuit.

In [13], the authors studied the effectiveness of using
precomputaion to reduce dynamic power on commercial off
the shelf FPGAs. They designed a 32-bit comparator using
their technique and achieved a reduction of 43% in dynamic
power. They also show the effect of the number of inputs used
in precomputation on the power consumption (both logic and
routing), and on resource utilization in FPGAs.

In [12] the authors proposed the use of precomputation in
designing content addressable memory (CAM). They illus-
trated that their Block-XOR PB-CAM system can be designed
without a special CAM cell design. Using their technique, they

27

show a 30% average power reduction using TSMC 0.35-µm
CMOS technology.

Multiplier sharing was introduced in [10] and it was shown
to improve speed in FIR filter design. However it was shown
to slightly increase power delay product. However, they im-
plemented their design as ASIC using 0.35-µm technology. In
the case of FFT and IFFT the data is multiplied by twiddle
factors raised to some power. Knowing the twiddle factor can
lead to a more efficient design than the one proposed in [10].

Most of the work in precomputation depends on turning
off or disabling parts of the circuits that we do not need
to get the results, thus saving dynamic power. Using this
technique, power is usually reduced, however the hardware or
computational resources in general are increased. We still have
to implement the same hardware without precomputation, then
we have to add routing and probably small amount of logic
to control enabling or disabling parts of the circuit.

In this paper, we use the knowledge from the problem
domain to perform precomputation and use Look Up Tables
(LUTs) instead of multipliers. Our design uses only adders
and LUT’s. Our technique resulted in not only low power,
but also using much less resources on the FPGA to design
the multiplier. A complete description of the multiplier and its
performance is presented in the next section

V. USING PRECOMPUTATION IN MULTIPLIER DESIGN

In this section, we introduce our multiplier-less technique
for FFT/IFFT in an OFDM system. in OFDM, the transmitter
performs IFFT on the output of a QAM encoder, while
the receiver performs FFT on the received signal (the D/A
conversion of the IFFT together with the added noise). We
use the fact that the multiplier multiplies the input by one of
the twiddle factors. Although there are N/2 twiddle factors for
N−point FFT/IFFT, there are N/4 distinct values for the real
and imaginary parts of the Twiddle factors. That means we
have only N/4 or 16 different values for the Twiddle factors
for 64-point FFT.

The second observation is that for the transmitter the input
to the IFFT unit is the QAM output. For 16-QAM like the
value we assume in this paper, the output (both real and
imaginary parts) are between +3 and −3. By proper shifting
(divide by 2) in the different stages of the IFFT we can
guarantee no overflow. That makes the design of the multiplier
simpler.

To illustrate our technique, assume we want to multiply a
12-bit number A by a 12-bit Twiddle W . If we divide the
12-bit A into four parts A3A2A1A0 where each Ai is a 3-bit
number. The multiplication of AW can be represented as

AW = 29A3W + 26A2W + 23A1W + A0W (2)

Performing the above computations is completely equivalent
to multiplying A by W using 12×12 multiplier. However using
equation 2 we can use one multiplier sequentially to save chip
area or use pipelining to increase the speed. Figure 8 shows
the multiplication of AW according to the above mentioned
scheme.

Since we are multiplying by a Twiddle factor (real or
imaginary part of a twiddle factor), the number of twiddle

Fig. 8. Multiplication of 2 12-bit numbers using 12x3-bit multipliers

factors in a stage is limited. For 64-point IFFT/FFT there are
16 in the last stage, 8 in the next to the last stage, then 4 and
2 different values for the Twiddle factors . By precomputing
the multiplication of all 3-bit numbers by a twiddle factor
and storing them in a LUT, we can eliminate a multiplier.
The lookup table is accessed according to Ai (3 bits) and
the twiddle factor to be multiplied with log2m where m is
the number of different Twiddle factors in a stage. Since the
maximum value of m for a 64-point FFT is 16, we need a
maximum of 4 bits to access the appropriate Twiddle factor. In
the last stage, we need 7-bit LUT (3 for the three bit numbers
and 4 for the 16 different twiddle factors). Every stage after
the last one we need one less bit (since the number of Twiddle
factor is divided by 2).

Fig. 9. Our proposed architecture

Figure 9 shows how to implement the multiplier using LUTs
and adders only. LUTs are ideal for FPGA implementation
since they are the basic building blocks for FPGA chips. They
require less area and consume less power than multipliers or
adders. Every LUT is accessed using log2m + 3 bits, where
m is the number of different twiddle factors in a stage (the
size of the LUT is 2m+3. For example in the last stage of a
DIT FFT the multipliers needed are W i where 1 ≤ i ≤ 15,
3 bits are used to choose the value of Ai and 4 bits are used
to multiply it by a specific twiddle value. Table II shows the
contents of one of the LUTs. For example if we consider the
middle numerical entry in Table II, address 010 0101 means

28

TABLE II
LUT ADDRESSES AND CONTENTS

LUT Address Contents

000 0001 0 × W 1
64 = 0

...
...

010 0101 2W 5
64

...
...

101 1000 5W 8
64

...
...

TABLE III
COMPARISON BETWEEN OUR PROPOSED ARCHITECTURE AND STANDARD

ARCHITECTURE

Metric Our architecture Standard

Slice registers 179 60
Slice LUTs 244 375
Occupied slices 70 108
MUXCYs 124 432
Power (mW) 29 71

that location contains the multiplication of the number 2 (the
first three bits of the address 010) by W 5

64 where 5 is the
last 4 bits of the address (0101). By accessing this particular
location in the LUT we get the result 2 × W 5

64.
The contents of the LUT is precomputed and a LUT

construct is used to implement the look up table in Verilog.
In the next section, we show the results of implementing our
method in FPGA.

VI. IMPLEMENTATION AND RESULTS

The proposed multiplier is implemented in FPGA using
Xilinx Spartan-6 FPGA (XC6SLX16) [15] and implemented
on Nexys-3 board [5]. In our implementation we implemented
only the multipliers. Our objective is to compare between a
standard floating point implementation using Xilinx IP and our
proposed implementation.

Since the multiplier size (and consequently power con-
sumption) depends on the number of Twiddle factors, the
multiplier size and power will be different from a stage to
stage. Assuming a pipelined FFT, there is a multiplier for each
stage. The number of Twiddle factors to be multiplied varies
from 2 to 16. In our implementation we used the total area of
the multipliers for the 6 stages. Table III shows the resource
usage and the power consumption for the 5 multipliers used
in the 5 stages of a 64-point FFT (one stage is multiplied by
1, and does not need any actual multiplier.

WE can see in Table III that our proposed multiplier reduces
the power consumption by almost 60%, and at the same time
uses less area on the chip than using a standard multiplier.
Although our proposed multiplier uses more slice registers,
but that is more than being offset by the saving in the number
of slice LUT’s, occupied slices, and MUXCy’s used.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented an implementation for a multi-
plier for a 64-point FFT used in an OFDM transmitter/receiver
using precomputation. Our multiplier uses less chip resources
than standard (IP) multiplier and at the same time reduces the
energy consumption by 60%.

We plan to extend our work to design a pipelined FFT
processor using the multiplier we proposed in this paper.

REFERENCES

[1] M. Alidina, J. Monteiro, S. Devads, A. Gosh, and M. Papaefthymiou.
”Precomputation-based sequential logic optimization for low power”.
IEEE Transaction on Very Large Scale Integration (VLSI) Systems.
Vol. 2 no. 4 pp. 426-436. Dec. 1994

[2] R. W. Chang ”Synthesis of band-limited orthogonal signals for
multichannel data transmission”. Bell System Tech. Journal. Vol.
45 Dec. 1966.

[3] Y.-N. Chang ”An efficient VLSI architecture for normal I/O order
pipeline FFT design” IEEE Trans. on Circuits and Systems II:
Express Brief. Vol. 55. Issue 12 pp. 1234-1238. Dec. 2008.

[4] C. Cheng, K. Parhi ”High-throughput VLSI architecture for FFT
computation” IEEE Trans. on Circuits and Systems II: Express Brief.
Vol. 54; Issue 10. pp 863:867 Oct. 2007.

[5] Digilent Inc. Nexys-3 Spartan-6 Board
http://www.digilentinc.com/Products/Detail.cfm?NavPath=
2,400,897&Prod=NEXYS3 Checked July 2013.

[6] S. Hassoun, and C. Ebeling ”Using precomputation in architecture
and logic resynthesis”. IEEE/ACM International Conference on
Computer-Aided Design (ICCAD98. pp 316-323 1998.

[7] H. Ho, V. Szwarc, T. Kwasniewski ”A reconfigurable systolic array
architecture for multicarrier wireless and multirate applications. In-
ternational Journal of Reconfigurable Computing. Vol. 2009 Article
ID 529512 2009.

[8] B. Kang and J. Kim ”Low complexity multi-point 4-channel FFT
processor for IEEE802.11n MIMO-OFDM WLAN system” Proc. of
the International Conference on Green and Ubiquitous Technology
pp 94-97 2012.

[9] R. Koutsoyannis, P. Milder, C. Berger,M. Glick, J. Hoe, M. Puschel
”Improving fixed-point accuracy of FFT in O-OFDM systems”. Proc.
of the Intl. Conf. on Acoustics, Speech, and Signal Processing.
ICASSP 2012.

[10] J. Park, K. Muhammad, K. Roy ”High-performance FIR filter design
based on sharing multiplication” IEEE Trans. on Very Large Scale
Integration (VLSI) Vol. 11, No. 2. pp 244-253. April 2003

[11] A. Peled and A. Ruiz ”Frequency domain data transmission using
reduced computational complexity algorithm” Proc. of the IEEE
Intl. Conf. on Acoustics, Speech, and Signal Processing pp 964-967.
Denver, CO 1980.

[12] S.-J. Ruan, and C.-Y. Wu ”Low power design of precomputation-
based content-addressable memory” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems. Vol. 16, issue 3. pp 331-335 2008.

[13] C. C. Tsang, H. K.-H. So ”Reducing dynamic power consumption
in FPGAs using precomputation”. Proc. of International Conference
on Field Programmable Technology (FPT 2009). Dec. 2009.

[14] S. Weinstein, P. Ebert ”Data transmission by frequency division
multiplexing using the discrete Fourier transform” IEEE Trans. on
communication. Vol. 19 Issue 5 pp 628-634, Oct. 1971.

[15] Xilinx Spartan-6 FPGA Family
http://www.xilinx.com/products/silicon-devices/fpga/spartan-
6/index.htm Checked July 2013.

[16] C.Y Yu S.-G. Chen ”Efficient CORDIC designs for multi-mode
OFDM FFT” Proc. of the Intl. Conference on Acoustic, Speech, and
Signal Processing ICASSP pp III-1036 - III-1039. 2006.

[17] B. Zhou, Y. Peng, D. Hwang ”Pipeline FFT architecture optimized
for FPGAs”. International Journal of Reconfigurable Computing.
Vol. 2009 Article ID 219140. 2009.

29

