
Romantiki OS – A single stack Multitasking
Operating System for Resource Limited Embedded

Devices.
Roman Glistvain1, Mokhtar Aboelaze2

Dept. of Computer Science and Engineering
York University

Toronto, ON. Canada
1romangl@email.com

2aboelaze@cse.yorku.ca

Abstract-- Most resource limited embedded systems are
programmed using super-loop architecture [21]. Although
programs written for super-loop architecture are hard to
debug and maintain, however it requires much less memory
which makes it suitable for resource limited devices.

In this paper, we propose an operating system
“Romantiki” that combines the resource efficiency of super-
loop architecture while featuring traditional multitasking
coding style which makes it easy to develop and maintain
complex projects for. We also compare the speed and
memory requirements for Romantiki with a commonly used
OS for embedded devices (FreeRTOS).

I. INTRODUCTION

Embedded processors are gaining popularity in many
devices. The number of embedded processors sold is
more than 20 times the number of general purpose
processors in desktop PC’s. The use of embedded
processors ranges from TV and DVD players to toasters
and microwave ovens. The average car contains more
than 10 embedded processors for fuel injection, anti-lock
brakes, and many other functions.

Low end embedded processors that are widely used in
embedded systems and sensor networks are characterized
by a simple processor with a limited processing power,
limited resources, and low power consumption. They also
have a low-to-moderate size memory without a Memory
management Unit (MMU). These processors require
special attention in developing application programs for.
For example NXP LPC1111 has a 8K byte of
programmable flash and 2K byte of SRAM. It is possible
of course to get embedded processors with a more
memory but that affects the price and power consumption
of the device.

In this paper we propose a simple operating system
that can run on embedded devices with very limited
memory resources. The operating system is called
Romantiki, which is Russian for “day dreamer”, and it
offers the feature-set of a standard cooperative
multitasking operating system. Our design requirement
for Romantiki is to satisfy five important criteria:
1) Fast startup time.
2) Small footprint in both RAM and Flash.

3) Fast response to time critical events. Thus, allowing
the operating system to be used in Soft Real-Time
systems.

4) Multitasking OS model for writing application code.
Allows code reuse between resource limited
embedded devices and devices running traditional
operating systems.

5) “Socket-like” API to write networking applications.
Thus providing the ability to create a common
networking abstraction layer between Romantiki OS
and traditional operating systems.

These requirements are met by placing tough coding
guidelines on the developer. The initial learning curve of
following those guidelines may result in a prolonged
development cycle. However, the benefit derived by
making the system use limited resources is far greater.

The remainder of the paper is organized as follows:
Section II is a motivation for our work and describes
Related Work. Section III describes local continuations.
Section IV describes the overall structure of Romantiki
OS. Section V provides benchmarks of running similar
applications on Romantiki vs. FreeRTOS Operating
System. Section VI is the direction of the future work.
Section VII provides the conclusion which defines the
goals achieved with the Romantiki Operating System.

II. MOTIVATION AND PREVIOUS WORK

A. Motivation

In his paper we focus on resource-constrained
embedded devices which have network based user
interface (UI). Those devices include network routers,
managed switches, automation equipment, wireless
sensor network devices, military surveillance, and
communication devices. We will show that it is possible
to write software for such devices following standard OS
like architecture and create real-time software
components which can be shared between complex
devices and resource limited devices. There are many
applications for our proposed operating system, these
include:

1) Making existing systems cheaper. Various systems
have a requirement for networking interface for

management purposes and currently employ complex
microcontrollers and expensive operating systems. Using
simple microcontrollers will reduce the cost of the
system.

2) Systems which require very fast startup time, in
order of milliseconds. One example of such device is an
industrial automation Modbus/TCP station. To allow
placement of those devices on a robot arm, the device
needs to be operational within a very short period of time.
Our proposed operating system is ideal for these
situations.

3) Battery operated wireless devices. Many home
automation wireless devices such as thermostats can
benefit from having a network GUI to be remotely
controlled.

One of the main advantages of our proposed operating
system is that programs written for Romantiki enjoy a
significant improvement in memory utilization compared
to standard Operating Systems. In this paper we compare
the memory requirements for running the same
application code on a small preemptive operating system
FreeRTOS and Romantiki OS. The RAM requirement for
the FreeRTOS based application is about two times larger
which means that the device needs to employ a bigger
and less energy efficient CPU.

B. Related Work

Operating systems for embedded processors usually
fall in one of two categories: run to completion systems
and preemptive multitasking systems. In run to
completion systems once a process is started, it will run
until it is completed, then the next process is scheduled
and so on. In preemptive multitasking a running job can
be preempted to run a higher priority job. After the higher
priority job is completed the preempted job could be
resumed. A run to completion system requires less
memory resources since only one process is running at
any time, and all programs share the same stack.
However, it may be hard to handle deadlines for real time
jobs. The lack of preemption may result in missing
important deadline because a low priority job is running
and can not be preempted. On the other hand preemptive
multitasking makes it easier to handle deadlines but it
requires large amounts of memory since every task
running or preempted must have its own stack [19].
Below is a brief description of previous work on
operating systems for embedded applications.

Baker in [2] discussed the theoretical possibility of
building a system capable of preemption using a single
stack. In his work he assumed that the stack grows with
every preemption and shrinks when a job is completed.
He also assumed that resource requirements and deadlines
are available offline. Although his work requires only a
single stack, but it does not save any memory.

Traditional approaches of using the standard
cooperating [14] or preemptive [10], [11] multitasking
suffer from the problem of having to allocate separate

stacks on a per task basis which are hard to calculate and
overall result in an inefficient use of memory resources
 [12].

The concept of Y-Threads [13] makes it possible to
create an operating system where the application
programmer is responsible for identifying the
preemptable and non-preemptable parts of the code. The
preemptable portions are assigned private stacks, while
the non-preemptable portions run on a common stack.
The system allows application programmer to choose a
tradeoff between performance and memory utilization.
Even though, the use of common stack allows to provide
significant improvements in memory resource efficiency,
this system still requires estimation of multiple stacks
which can be hard in many cases [12].

In Mtss, [12] the authors proposed a technique where
tasks that need more stack space use stacks of other tasks
thus reducing the memory requirements of the program.

Mantis [3] is a multitasking operating system designed
specifically for sensor nodes in a sensor network. Mantis
allocates individual stack space for tasks and then uses
round-robin scheduling of tasks in the same priority level
using time slicing.

There has been a significant amount of research in the
area of limited memory embedded systems. In particular
the recent research focuses on the area of Operating
Systems with an integrated TCP/IP networking for small
microcontrollers with embedded Flash and RAM [8],
 [10], [11], [14], [20].

Some operating systems such as Linux and Windows
CE have an integrated TCP/IP stack and provide many
standard features of their desktop counterparts. They have
a very simple interface for the creation of processes and
tasks without forcing the user to worry about the stack
allocation for each task. This is accomplished by
requiring the use of Memory Management Unit (MMU)
hardware which provides protection mechanisms as well
as a simple way of dynamically growing task stacks.
Since, many embedded microcontrollers don’t have the
MMU hardware; they require a different kind of
operating system, the kind which accomplishes the task of
task scheduling with minimum amount of hardware
support.

The work of Adam Dunkels [8], [6], [7]serves as a
guideline that it is possible to have TCP/IP functionality
as well as a small operating system running on small
microcontrollers. His work on Protothreads [6], which
provides a way to perform context switch using stack
rewinding, laid the foundation for the Romantiki
operating system. He developed Contiki [8] event-driven
operating system which provides a feature-set similar to
Romantiki OS. The main difference between Contiki OS
and Romantiki OS lies in their target applications.

The Contiki Operating System with uIP stack is
primarily targeted to 8 and 16 bit microcontrollers with
very small amounts of RAM such as 2kb. Contiki doesn’t
have task priorities and therefore, it is hard to use in

applications where task level real-time response is
desired.

The Romantiki operating system is targeted to new 32
bit microcontrollers with 16kb or more of RAM. It is
designed as a cooperative multitasking operating system
with task priorities. This design makes it possible to
service certain types of real-time [15] events and
therefore, it is targeted towards more complex embedded
devices than Contiki OS. Moreover, the use of traditional
inter-task communication and multitasking coding style
makes it easy to provide code reuse and share the same
codebase between traditional microprocessors and
memory constrained microcontrollers.

III. LOCAL CONTINUATIONS

A. Overview

Local continuations [6] provide a way of creating
multitasking functionality without creating separate
stacks for individual tasks. Even though this functionality
requires certain changes in the code structure compared to
traditional preemptive multitasking, it provides a way of
achieving an efficient use of memory resources. The
program based on local continuation uses single stack to
provide multitasking functionality.

Local continuations are used extensively in state
machine based programs running on top of superloop
systems - microcontroller applications that do not have
an underlying operating system. Various local
continuation libraries such as Protothreads [6] provide
functionality which allows super-loop programs to be
created using multitasking programming style. This
provides the benefit of creating multitasking functionality
which is easy to write and maintain without the overhead
of an operating system.

B. Continuations

Traditional operating systems allow suspending and
resuming running tasks by recording the current state of
the task into the stack. Task state contains values of local
variables, return addresses of nested functions and the set
of CPU registers required to restore the execution of a
suspended task.

Continuations provide a mechanism of saving and
restoring the execution of a specific function. The state of
the function contains state of CPU registers as well as the
values of local variables. Regular continuations have the
same memory requirements as the traditional operating
system tasks since they need to save the local variables of
functions on a function stack.

C. Local Continuations

Local continuations save only the execution state of the
function and not its local variables. The execution state is
called “continuation point” and typically contains the

snapshot of CPU registers at the place in the function the
execution needs to be resumed from.

This functionality is similar to state machine programs
which maintain the state of execution as well as state
related variables in the global memory. Local variables in
state machine functions are used only for short time
computations but are not maintained across multiple
invocations of the state machine handler. Figure 1 show a
fragment of code demonstrates a typical state machine
function performing long running computation.

Fig. 1. A typical state machine based function.

Since state related variables in state machine programs
are not saved on a stack, the use of stack in such functions
is very limited. Moreover, since state machine programs
run to completion, their memory requirements are much
smaller than multitasking in preemptive operating
systems.

Local continuations follow the same rules as state
machines; therefore, multitasking functionality based on
local continuations results in a significant memory saving
compared to traditional multitasking operating system
projects.

One major drawback of state machine based
programming is the difficulty to create complex projects
which are easy to understand and maintain. The example
state machine code in Fig. 1 is hard to understand by
simply looking at it. Local continuation libraries provide
a way of hiding details of underlying state machine using
standard C preprocessor.

The code in Fig 2 represents the same function as in
Fig 1 rewritten using a simple macro library.

// state
unsigned long calc_st=CALC_ST_INIT;
// state variables
double calc=0;
unsigned long counter=0;
// state machine function
void calc_state_machine(double* calc, int* res)
{
 switch (calc_st)
 {
 case CALC_ST_INIT:
 counter=0;
 *calc=1.0;
 calc_st=CALC_ST_COMP;
 *res=CALC_IN_PROGRESS;
 break;
 case CALC_ST_COMP:
 if (counter<10)
 {
 *calc+=pow(*calc,3.5);
 counter++;
 }
 else
 {
 *res=CALC_DONE;
 calc_st=CALC_ST_INIT;
 }
 break;
 }
}

Fig. 2. The same code in Fig 1 rewritten using macro library

The above code fragment is easy to read and
understand with exception of a few API calls:
BF_BEGIN, BF_YEILD and BF_END which are placed
in different parts of the blocking function. Those API
calls are preprocessor macros are shown in Figure 3.

It is evident that the code in Fig. 2 which appears after
the macro expansion is a state machine code similar to
Fig. 1. However, the code in Fig 2 is much easier to read
and understand. This serves as a basis of using local
continuations to express complex projects.

Local continuations allow writing multitasking code
while maintaining a memory footprint of a state machine
based program. This is accomplished by hiding details of
state machines using standard C preprocessor.

Fig. 3. The macro needed for Fig. 2

The small macro library defined in Fig 3. makes it
possible to implement nested blocking calls:

Fig. 4. Example of a non-reentrant blocking function

The above code in Figure 4 shows how it is possible to
create nested non-reentrant blocking functions. This
transformation is used in a number of continuation
libraries [6], [4] and it serves as a basis for the
continuation library of Romantiki operating system.

D. Protothreads

The protothread library [6] by Adam Dunkels uses local
continuation functionality to provide multitasking coding
style. The library provides various blocking constructs
which makes it possible to construct complex
multitasking projects. This was the first local continuation
library which allowed the blocking calls to be made in
nested continuation functions.

The protothread library is used in variety of
applications such as Contiki operating system and uIP
TCP/IP stack. It serves as the basis for the
implementation of the continuation library used in the
Romantiki operating system.

IV.ROMANTIKI OS

A. Overview

Romantiki OS is based on a classical multitasking
model. The Romantiki OS consists of a kernel which
provides various services and a task scheduler. The
application project consists of multiple tasks each of
which uses services provided by the kernel. Figure 5
shows a block diagram for the Romantiki operating
system.

Task scheduling in Romantiki is cooperative which
means that the scheduler will allow a high priority
process to run only when the current task yields the
control to the scheduler. The scheduler of Romantiki is
based on a bitmap scheduler [16] with 31 tasks allowed in
the system. Each task has a unique priority between 1 and
31.

enum
{
 BF_FINISHED,
 BF_BLOCKED
};

#define BFD char
#define BF_BEGIN static unsigned short local_cont=0; \
 switch(local_cont) \
 { \
 case 0:
#define BF_YIELD local_cont=__LINE__; \
 return BF_BLOCKED; \
 case __LINE__:;
#define BF_END local_cont=0;} return BF_FINISHED;
#define BF_EXIT local_cont=0; return BF_FINISHED;
#define BFC(func) if ((func)==BF_BLOCKED) \
 { \
 BF_YIELD;\
 }

BFD cont_func(double* calc, int* res)
{
 static int counter;
 BF_BEGIN
 counter=0;
 *calc=1.0;
 *res=CALC_IN_PROGRESS;
 for (counter=0; counter<10; counter++)
 {
 *calc+=pow(*calc,3.5);
 BF_YIELD
 }
 *res=CALC_DONE;
 BF_END
}

BFD block_func_nest_level_one()
{
 static int res;
 static double calc;
 BF_BEGIN
 res=CALC_IN_PROGRESS;

 BFC(cont_func(&calc,&res));

 printf("Result=%f\n",calc);
 BF_END
}

Fig 5. Romantiki Operating System

The uniqueness of the Romantiki OS is due to the use
of local continuations to perform context switch.

B. Local continuations library in Romantiki

Romantiki OS uses local continuations to provide the
functionality of blocking system calls. The library
provides a number of features not present in other local
continuation libraries. The features of Rmoantiki are
summarized as:
1) Provides an abstraction layer which hides the

definition and management of continuation points
away from the developer. This makes the code easier
to write and maintain.

2) Supports reentrant and non-reentrant blocking
functions with different sets of macros.

3) Reduced functionality of the local continuation library.
Event handling is part of the intertask communication
API and is integrated into the operating system kernel.

4) The Romantiki OS local continuation library allows
making blocking calls within nested functions which is
standard practice in traditional operating systems. This
makes it possible to adapt existing code into the
Romantiki and maintain the same code-base between
different operating systems. Other local continuation
libraries integrated into real time operating systems

such as Salvo RTOS [17] and FreeRTOS with
CoRoutines [10] do not provide this functionality.

C. System Calls

The Romantiki Operating System implements the
following kernel services:
1) Task manipulations: Task Creation, Task Startup, and

Conditional Yielding
2) Events: Event creation and Event triggering. Both can

be executed at a task level or interrupt level. Tasks
blocks waiting for an event using
WaitSingleEvent Tasks can also wait for multiple
events using WaitMultipleEvents

3) Timer API: OS_Sleep blocks the running task for the
given number of milliseconds, while getOsTick
Gets the snapshot of the operating system tick counter.

4) Semaphores: implements both semTake and
semGive.

5) TCP/IP Socket API: Provides TCP/UDP Interface.
The system call API is small compared to the

traditional operating systems. The typical functionality of
task deletion, suspension, dynamic memory management
and message queues is not part of the kernel. It is possible
to implement some of the above functionality in the
application level based on the project requirements.
However, many embedded systems can be implemented
without the above functionality. Moreover, leaving this
functionality outside the scope of the OS kernel makes it
possible to create a simple operating system which is easy
to learn and use in many embedded applications.

D. Events in Romantiki

The Romantiki operating system uses events as a main
mechanism for inter-task communication and it builds
more advanced objects such as timers, sockets and
mutexes using events. In Romantiki, a task can wait for
one or more events while other tasks or interrupts trigger
events. The functionality of the event subsystem in
Romantiki is similar to Event API in Windows [9]. The
event API consists of 2 function groups:
1) Trigger Event. This is a non-blocking function which

can be called from tasks and interrupts
2) Wait For Event(s). The calling task is suspended until

one or more events it is waiting for have been
triggered.
Each event in Romantiki has an event control block

(ECB) associated with it. Since tasks in Romantiki can be
blocked waiting for events, unrelated events should not
unblock the waiting task. Therefore, each ECB contains a
pointer to the Task Control Block (TCB) of the task
which is currently blocked on the event. Other fields in
the ECB contain event status and configuration
information.

 The event triggering function is part of the kernel.
Therefore, it sets the task pending as soon as the event is
triggered. The diagram below in Figure 6 demonstrates

the process of event handling and an interaction between
an interrupt, scheduler and a task.

Fig 6. Interaction between events and the ECB

There is a limitation associated with events in
Romantiki that only one task can be blocked on a certain
event at a certain instance of time.

E. Tasks in Romantiki

In Romantiki a task can be in one of the 3 states:
blocked, pending or running as shown in Fig. 7. The
scheduler maintains a list of pending tasks. The pending
list is updated during event triggering or conditional
yielding. When the currently running process yields, the
scheduler gets a chance to run. It selects the highest
priority task from the pending list and invokes its
processing function.

Fig 7. State diagram representing task state.

F. Conditional Yielding

Yielding is a common mechanism in cooperative
operating systems to allow other tasks to run while one
task executes long running operations such as complex
arithmetic. During the process of yielding, the scheduler
gets control and it selects the next task from the pending
list. If there are no other tasks present in the pending list,
the current task is re-invoked.

In an operating system where each task has a unique
priority, a task should yield only if there is a higher
priority pending task. Therefore, the use of an
unconditional yield statement results in a wasted

invocation of the scheduler and frequent rescheduling of
the currently running task.

Romantiki operating system avoids the inefficiency of
unconditional yielding by providing a construct which
forces the task to yield only when higher priority task is
pending. It is possible to provide this functionality since
all the inter-task communication mechanisms are
implemented using events and each task has a unique
priority in the system.

This functionality is implemented by allowing the
developer to insert special command
“PREEMPTION_POINT” into his code. This command
is a macro which contains the following functionality:
1) check global variable “preemption_request”.
2) If “preemption_request==TRUE” then YIELD.
3) Otherwise continue execution of the current task.

The preemption_request variable is updated inside the
event triggering function “asyncTriggerEvent”
which checks whether or not the task waiting on the event
has a higher priority than the currently running task.

Figure 8 provides an illustration of the conditional
yielding operation. Each state transition is marked with a
number which indicates the sequence of that specific
event.

.

Fig 8. Conditional yielding

G. Real-Time application support

The real-time response can be accomplished on a
cooperative basis if all the tasks do not run for a long time
without yielding. This is accomplished by placing
“PREEMPTION_POINT” macros across long running
operations and various points in tasks.

H. Overhead of Romantiki OS

The Romantiki OS has a very small footprint. The core
code of Romantiki requires 2.2 Kbytes of Flash and 316
bytes of RAM. This measurement was done when the
code was compiled for AT91SAM7X256 ARM

microcontroller using GCC compiler 4.3.2 with
optimization level –O2.

The core of the Romantiki OS consists of the task
handling API, scheduler, timer subsystem and event
subsystem.

I. Code Sharing.

The Romantiki operating system is unique because it is
based on a traditional multitasking model while using a
single rewinding stack for all tasks. This approach allows
creating projects which have footprint of super-loop
programs while the application code is easily
maintainable, extendable and can be shared with projects
running on preemptive operating systems.

The Romantiki OS uses a concept similar to Y-Threads
where the developer needs to identify sections of the code
which perform blocking calls and other sections which
run-to-completion. This way, the developer needs to
follow certain rules when defining blocking functions,
while the non-blocking functions can use the unrestricted
C language as they run to completion.

A common API can be created which is used by
applications running on Romantiki OS and traditional
operating systems. The goal of this API is to create
transparent OS abstraction layer which would allow
common operations such as Task definition and creation,
Event API, and Timer API

The following are the details of the implementation of
this abstraction layer in FreeRTOS preemptive operating
system:
1) The task definition and creation is accomplished via

FreeRTOS task API.
2) The task control block is extended to provide data

storage required for the events associated with tasks
3) Tasks in FreeRTOS are assigned individual stacks.
4) Event API is implemented using binary semaphores

provided by the FreeRTOS.
5) Timer API is implemented using FreeRTOS timer

subsystem.

V. PERFORMANCE EVALUATION

In order to evaluate the Romantiki operating system, a
typical embedded project was chosen and implemented
using the same codebase under two operating systems
Romantiki OS and FreeRTOS, a preemptive multitasking
operating system. The test project implements an
application where multiple protocols are multiplexed into
a single communication channel. Many different
applications are based on multiplexed channel model such
as TCP/IP [7] DeviceNet [5] and MPEG-TS [22].

The test project runs on AT91SAM7X-EK [1]
evaluation board and uses an Ethernet channel to
implement multiple encapsulated protocols. The
implemented encapsulation is much simpler than TCP/IP.

In this project a number of tasks and API calls are used
to implement the basic encapsulation and message
transmission. There are also a large number of application

tasks that use the encapsulation services to transmit
messages. Each client and server application is
implemented as a task in the operating system. This
approach results in a large number of tasks and a multiple
context switches to transmit and receive messages. Figure
9 shows a block diagram of the test project.

Fig 9. Test project for Romantiki

The test project contains 16 tasks which implement
encapsulation and variety of application protocols. The
performance of the different platforms was measured
using the setup described Figure 10.

Fig 10. performance measurements for the test project.

The absolute timing of network frames was captured
using the network sniffer and results were averaged over
5 samples for each platform.

Table I shows the memory requirements and the
request response cycle of Romantiki and FreeRtos
running on the hardware mentioned above.

TABLE I
A comparison between Romantiki and FreeRTOS

 Request response
cycle sec

Flash size in
KB

RAN size in
KB

Romantiki 664.0 12.956 14.732
FreeRTOS 694.2 14.588 31.668

Even though both operating systems are quite similar
in size and share an identical application code, there is
still about 10% difference in size of the application which
is primarily attributes to the simulation of Event API in
FreeRTOS.

The biggest advantage of the Romantiki OS is the use
of a single rewinding stack for all tasks. This eliminates
the need to perform individual stack estimation where
memory is commonly overestimated in order to
accommodate future growth of the stack. In the
FreeRTOS test project each application task is assigned
its own 1 kb stack. In Romantiki a single 1kb stack is
used for all tasks and additional storage within the task
descriptor which is used to store variables of reentrant
blocking functions. Since there are 16 tasks in the system
the stack allocation represents a significant amount of
memory resources on the FreeRTOS platform. The reason
for the large stack in each task is recursive functions and
callbacks which run to completion under Romantiki but
can be preempted in FreeRTOS.

The Romantiki OS provides 54% improvement in the
memory use (RAM) for the test application compared to
the same application running on FreeRTOS. Also the
system is slightly faster under Romantiki.

It is possible to avoid using the overestimation strategy
and tweak the stack size for individual tasks on
FreeRTOS. This will reduce the memory use in
FreeRTOS application by a large margin. However it will
increase the development time and make it hard to find
problems in the system since for each software change,
stack sizes need to be reevaluated. In Romantiki OS
overestimation is performed over a single stack while in
FreeRTOS it is performed over multiple stacks and this
causes the large difference in memory use.

VI.FUTURE WORK

The future work will concentrate on implementing
TCP/IP functionality in Romantiki. We will also add
preemptive multitasking support for Romantiki based on
SST [20].

VII. CONCLUSION

Romantiki was designed as a proof of concept of a
multitasked operating system which fits the RAM and
Flash footprint of corresponding superloop project. It is
very compact and easily portable to different
architectures.

When the number of application tasks is high, the
Romantiki OS provides very significant improvement in
RAM efficiency compared to traditional preemptive
operating systems.

This operating system allows constructing of complex
devices using very small and cheap microcontrollers.

The application code written for Romantiki can be
recompiled to a traditional preemptive operating system
such as FreeRTOS without making any changes to the
application. This is accomplished by using a common OS
abstraction layer when writing application code.

REFERENCES.
[1] AT91SAM7X-EK Evaluation board

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3759.
Accessed Jan. 2010.

[2] T. P. Baker. “A stack-based resource allocation policy for realtime
processes”. Proc. Real-Time Systems symposium, 1990 pp 191–
200.

[3] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B.
Shucker, C. Gruenwald, A. Torgerson, and R. Han. “Mantis os: an
embedded multitasked operating system for wireless micro sensor
platforms”. Mobile Networks Applications, 10(4) pp563–579,
2005.

[4] S. Tatham. (2010) CoRoutines in C [Online] Available
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html.

[5] (2010) DeviceNet Network [Online]
http://www.ab.com/en/epub/catalogs/12762/2181376/214372/176
8364/3404052/.

[6] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali ”Protothreads:
Simplifying Event-Driven Programming of Memory-Constrained
Embedded Systems” Proc. of the 4th International Conference on
Embedded Networked Sensor Systems 2006. pp 29-42..

[7] A. Dunkels “Full TCP/IP for 8-bit architecture” Proc. the 1st
international conference on Mobile systems, applications and
services. 2003. pp 85-98.

[8] A. Dunkels, B. Grönvall, and T. Voigt “Contiki - a Lightweight
and Flexible Operating System for Tiny Networked Sensors”.
Proc. the 29th Annual EEE International Conference on Local
Computer Networks 2004. pp 455-462.

[9] (2010) Event API in Windows [Online] Available
http://msdn.microsoft.com/en-us/library/ms686915(VS.85).aspx.

[10] (2010) FreeRTOS Operating System [Online] Available
http://www.freertos.org/

[11] J. labrosse MicroC/OS-II: The Real-Time Kernel: 2nd ed. 2002.
[12] B. Middha, M. Simpson, and R. Barua. Mtss: “multi task stack

sharing for embedded systems”. proc. the international
conference on Compilers, architectures and synthesis for
embedded systems, 2005. pp 191–201

[13] C. Nitta, R. Pandey, and Y. Ramin. “Ythreads: Supporting
concurrency in wireless sensor networks”. proc. Intl Conference
on Distributed Computing in Sensor Systems (DCOSS), 2006

[14] (2010) Nut/OS [Online] Available
http://www.ethernut.de/en/software/index.html.

[15] C. Penumuchu Simple Real-Time Operating System: A Kernel
Inside View for a Beginner, Trafford Publishing 2007.

[16] (2010) Protothreads with Scheduler [Online] Available
http://code.google.com/p/protothread/

[17] (2010) Salvo RTOS [line] Available
http://www.pumpkininc.com/.

[18] (2010) eCos kernel overview [Online] Available
http://ecos.sourceware.org/docs-2.0/ref/kernel-overview.html.

[19] A. Singhania, S. han, and M. Srivastava, “Knots: An efficient
single stack preemption mechanism for resource constrained
devices”. Networked and Embedded Systems Laboratory, UCLA,
TR-UCLA-NESL-200710-02 October 2007.

[20] (2010) Super Simple Tasker [Online] Available
http://www.embedded.com/columns/technicalinsights/190302110
?_requestid=313577

[21] D. Stonier-Gibson (2010) “Understanding embedded
microcontroller multitasking RTOS alternatives” [Online]
Available http://www.splatco.com/rtos_1.htm

[22] P.A. Sarginson (2010) MPEG-2 Overview of systems layer
[Online] Available
http://downloads.bbc.co.uk/rd/pubs/reports/1996-02.pdf.

