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Abstract-- Most resource limited embedded systems are 
programmed using super-loop architecture [21]. Although 
programs written for super-loop architecture are hard to 
debug and maintain, however it requires much less memory 
which makes it suitable for resource limited devices. 

In this paper, we propose an operating system 
“Romantiki” that combines the resource efficiency of super-
loop architecture while featuring traditional multitasking 
coding style which makes it easy to develop and maintain 
complex projects for. We also compare the speed and 
memory requirements for Romantiki with a commonly used 
OS for embedded devices (FreeRTOS). 

I. INTRODUCTION

Embedded processors are gaining popularity in many 
devices. The number of embedded processors sold is 
more than 20 times the number of general purpose 
processors in desktop PC’s. The use of embedded 
processors ranges from TV and DVD players to toasters 
and microwave ovens. The average car contains more 
than 10 embedded processors for fuel injection, anti-lock 
brakes, and many other functions. 

Low end embedded processors that are widely used in 
embedded systems and sensor networks are characterized 
by a simple processor with a limited processing power, 
limited resources, and low power consumption. They also 
have a low-to-moderate size memory without a Memory 
management Unit (MMU). These processors require 
special attention in developing application programs for. 
For example NXP LPC1111 has a 8K byte of 
programmable flash and 2K byte of SRAM. It is possible 
of course to get embedded processors with a more 
memory but that affects the price and power consumption 
of the device. 

In this paper we propose a simple operating system 
that can run on embedded devices with very limited 
memory resources. The operating system is called 
Romantiki, which is Russian for “day dreamer”, and it 
offers the feature-set of a standard cooperative 
multitasking operating system. Our design requirement 
for Romantiki is to satisfy five important criteria:  
1) Fast startup time. 
2) Small footprint in both RAM and Flash. 

3) Fast response to time critical events. Thus, allowing 
the operating system to be used in Soft Real-Time 
systems. 

4) Multitasking OS model for writing application code. 
Allows code reuse between resource limited 
embedded devices and devices running traditional 
operating systems. 

5) “Socket-like” API to write networking applications. 
Thus providing the ability to create a common 
networking abstraction layer between Romantiki OS 
and traditional operating systems. 

These requirements are met by placing tough coding 
guidelines on the developer. The initial learning curve of 
following those guidelines may result in a prolonged 
development cycle. However, the benefit derived by 
making the system use limited resources is far greater. 

The remainder of the paper is organized as follows: 
Section II is a motivation for our work and describes 
Related Work. Section III describes local continuations. 
Section IV describes the overall structure of Romantiki 
OS. Section V provides benchmarks of running similar 
applications on Romantiki vs. FreeRTOS Operating 
System. Section VI is the direction of the future work. 
Section VII provides the conclusion which defines the 
goals achieved with the Romantiki Operating System. 

II. MOTIVATION AND PREVIOUS WORK

A. Motivation 

In his paper we focus on resource-constrained 
embedded devices which have network based user 
interface (UI). Those devices include network routers, 
managed switches, automation equipment, wireless 
sensor network devices, military surveillance, and 
communication devices. We will show that it is possible 
to write software for such devices following standard OS 
like architecture and create real-time software 
components which can be shared between complex 
devices and resource limited devices. There are many 
applications for our proposed operating system, these 
include: 

1) Making existing systems cheaper. Various systems 
have a requirement for networking interface for 



management purposes and currently employ complex 
microcontrollers and expensive operating systems. Using 
simple microcontrollers will reduce the cost of the 
system. 

2) Systems which require very fast startup time, in 
order of milliseconds. One example of such device is an 
industrial automation Modbus/TCP station. To allow 
placement of those devices on a robot arm, the device 
needs to be operational within a very short period of time. 
Our proposed operating system is ideal for these 
situations. 

3) Battery operated wireless devices. Many home 
automation wireless devices such as thermostats can 
benefit from having a network GUI to be remotely 
controlled. 

One of the main advantages of our proposed operating 
system is that programs written for Romantiki enjoy a 
significant improvement in memory utilization compared 
to standard Operating Systems. In this paper we compare 
the memory requirements for running the same 
application code on a small preemptive operating system 
FreeRTOS and Romantiki OS. The RAM requirement for 
the FreeRTOS based application is about two times larger 
which means that the device needs to employ a bigger 
and less energy efficient CPU. 

B. Related Work 

Operating systems for embedded processors usually 
fall in one of two categories: run to completion systems 
and preemptive multitasking systems. In run to 
completion systems once a process is started, it will run 
until it is completed, then the next process is scheduled 
and so on. In preemptive multitasking a running job can 
be preempted to run a higher priority job. After the higher 
priority job is completed the preempted job could be 
resumed. A run to completion system requires less 
memory resources since only one process is running at 
any time, and all programs share the same stack. 
However, it may be hard to handle deadlines for real time 
jobs. The lack of preemption may result in missing 
important deadline because a low priority job is running 
and can not be preempted. On the other hand preemptive 
multitasking makes it easier to handle deadlines but it 
requires large amounts of memory since every task 
running or preempted must have its own stack  [19]. 
Below is a brief description of previous work on 
operating systems for embedded applications. 

Baker in  [2] discussed the theoretical possibility of 
building a system capable of preemption using a single 
stack. In his work he assumed that the stack grows with 
every preemption and shrinks when a job is completed. 
He also assumed that resource requirements and deadlines 
are available offline. Although his work requires only a 
single stack, but it does not save any memory. 

Traditional approaches of using the standard 
cooperating  [14] or preemptive  [10],  [11] multitasking 
suffer from the problem of having to allocate separate 

stacks on a per task basis which are hard to calculate and 
overall result in an inefficient use of memory resources 
 [12]. 

The concept of Y-Threads  [13] makes it possible to 
create an operating system where the application 
programmer is responsible for identifying the 
preemptable and non-preemptable parts of the code. The 
preemptable portions are assigned private stacks, while 
the non-preemptable portions run on a common stack. 
The system allows application programmer to choose a 
tradeoff between performance and memory utilization. 
Even though, the use of common stack allows to provide 
significant improvements in memory resource efficiency, 
this system still requires estimation of multiple stacks 
which can be hard in many cases  [12]. 

In Mtss,  [12] the authors proposed a technique where 
tasks that need more stack space use stacks of other tasks 
thus reducing the memory requirements of the program.  

Mantis  [3] is a multitasking operating system designed 
specifically for sensor nodes in a sensor network. Mantis 
allocates individual stack space for tasks and then uses 
round-robin scheduling of tasks in the same priority level 
using time slicing. 

There has been a significant amount of research in the 
area of limited memory embedded systems. In particular 
the recent research focuses on the area of Operating 
Systems with an integrated TCP/IP networking for small 
microcontrollers with embedded Flash and RAM  [8], 
 [10],  [11],  [14], [20]. 

Some operating systems such as Linux and Windows 
CE have an integrated TCP/IP stack and provide many 
standard features of their desktop counterparts. They have 
a very simple interface for the creation of processes and 
tasks without forcing the user to worry about the stack 
allocation for each task. This is accomplished by 
requiring the use of Memory Management Unit (MMU) 
hardware which provides protection mechanisms as well 
as a simple way of dynamically growing task stacks.  
Since, many embedded microcontrollers don’t have the 
MMU hardware; they require a different kind of 
operating system, the kind which accomplishes the task of 
task scheduling with minimum amount of hardware 
support. 

The work of Adam Dunkels  [8],  [6],  [7]serves as a 
guideline that it is possible to have TCP/IP functionality 
as well as a small operating system running on small 
microcontrollers. His work on Protothreads  [6], which 
provides a way to perform context switch using stack 
rewinding, laid the foundation for the Romantiki 
operating system. He developed Contiki  [8] event-driven 
operating system which provides a feature-set similar to 
Romantiki OS. The main difference between Contiki OS 
and Romantiki OS lies in their target applications.  

The Contiki Operating System with uIP stack is 
primarily targeted to 8 and 16 bit microcontrollers with 
very small amounts of RAM such as 2kb. Contiki doesn’t 
have task priorities and therefore, it is hard to use in 



applications where task level real-time response is 
desired. 

The Romantiki operating system is targeted to new 32 
bit microcontrollers with 16kb or more of RAM. It is 
designed as a cooperative multitasking operating system 
with task priorities. This design makes it possible to 
service certain types of real-time  [15] events and 
therefore, it is targeted towards more complex embedded 
devices than Contiki OS. Moreover, the use of traditional 
inter-task communication and multitasking coding style 
makes it easy to provide code reuse and share the same 
codebase between traditional microprocessors and 
memory constrained microcontrollers.  

III. LOCAL CONTINUATIONS

A. Overview

Local continuations  [6] provide a way of creating 
multitasking functionality without creating separate 
stacks for individual tasks. Even though this functionality 
requires certain changes in the code structure compared to 
traditional preemptive multitasking, it provides a way of 
achieving an efficient use of memory resources. The 
program based on local continuation uses single stack to 
provide multitasking functionality.  

Local continuations are used extensively in state 
machine based programs running on top of superloop 
systems  - microcontroller applications that do not have 
an underlying operating system. Various local 
continuation libraries such as Protothreads  [6] provide 
functionality which allows super-loop programs to be 
created using multitasking programming style. This 
provides the benefit of creating multitasking functionality 
which is easy to write and maintain without the overhead 
of an operating system. 

B. Continuations 

Traditional operating systems allow suspending and 
resuming running tasks by recording the current state of 
the task into the stack. Task state contains values of local 
variables, return addresses of nested functions and the set 
of CPU registers required to restore the execution of a 
suspended task.  

Continuations provide  a mechanism of saving and 
restoring the execution of a specific function. The state of 
the function contains state of CPU registers as well as the 
values of local variables. Regular continuations have the 
same memory requirements as the traditional operating 
system tasks since they need to save the local variables of 
functions on a function stack. 

C. Local Continuations 

Local continuations save only the execution state of the 
function and not its local variables. The execution state is 
called “continuation point” and typically contains the 

snapshot of CPU registers at the place in the function the 
execution needs to be resumed from.  

This functionality is similar to state machine programs 
which maintain the state of execution as well as state 
related variables in the global memory. Local variables in 
state machine functions are used only for short time 
computations but are not maintained across multiple 
invocations of the state machine handler.  Figure 1 show a 
fragment of code demonstrates a typical state machine 
function performing long running computation. 

Fig. 1. A typical state machine based function. 

Since state related variables in state machine programs 
are not saved on a stack, the use of stack in such functions 
is very limited. Moreover, since state machine programs 
run to completion, their memory requirements are much 
smaller than multitasking in preemptive operating 
systems. 

Local continuations follow the same rules as state 
machines; therefore, multitasking functionality based on 
local continuations results in a significant memory saving 
compared to traditional multitasking operating system 
projects.

One major drawback of state machine based 
programming is the difficulty to create complex projects 
which are easy to understand and maintain. The example 
state machine code in Fig. 1 is hard to understand by 
simply looking at it.  Local continuation libraries provide 
a way of hiding details of underlying state machine using 
standard C preprocessor. 

The code in Fig 2 represents the same function as in 
Fig 1 rewritten using a simple macro library. 

// state 
unsigned long calc_st=CALC_ST_INIT; 
// state variables 
double calc=0; 
unsigned long counter=0; 
// state machine function 
void calc_state_machine(double* calc, int* res) 
{
     switch (calc_st) 
     { 
     case CALC_ST_INIT: 
          counter=0; 
          *calc=1.0; 
          calc_st=CALC_ST_COMP; 
          *res=CALC_IN_PROGRESS; 
          break; 
     case CALC_ST_COMP: 
          if (counter<10) 
          { 
               *calc+=pow(*calc,3.5); 
               counter++; 
          } 
          else 
          { 
               *res=CALC_DONE; 
               calc_st=CALC_ST_INIT; 
          } 
          break; 
     } 
}



Fig. 2. The same code in Fig 1 rewritten using macro library 

The above code fragment is easy to read and 
understand with exception of a few API calls: 
BF_BEGIN, BF_YEILD and BF_END which are placed 
in different parts of the blocking function. Those API 
calls are preprocessor macros are shown in Figure 3. 

It is evident that the code in Fig. 2 which appears after 
the macro expansion is a state machine code similar to 
Fig. 1. However, the code in Fig 2 is much easier to read 
and understand. This serves as a basis of using local 
continuations to express complex projects.  

Local continuations allow writing multitasking code 
while maintaining a memory footprint of a state machine 
based program. This is accomplished by hiding details of 
state machines using standard C preprocessor.  

Fig. 3. The macro needed for Fig. 2 

The small macro library defined in Fig 3. makes it 
possible to implement nested blocking calls:   

Fig. 4. Example of a non-reentrant blocking function 

The above code in Figure 4 shows how it is possible to 
create nested non-reentrant blocking functions. This 
transformation is used in a number of continuation 
libraries  [6],  [4] and it serves as a basis for the 
continuation library of Romantiki operating system. 

D. Protothreads 

The protothread library [6] by Adam Dunkels uses local 
continuation functionality to provide multitasking coding 
style. The library provides various blocking constructs 
which makes it possible to construct complex 
multitasking projects. This was the first local continuation 
library which allowed the blocking calls to be made in 
nested continuation functions.  

The protothread library is used in variety of 
applications such as Contiki operating system and uIP 
TCP/IP stack. It serves as the basis for the 
implementation of the continuation library used in the 
Romantiki operating system.   

IV.ROMANTIKI OS 

A.  Overview 

Romantiki OS is based on a classical multitasking 
model. The Romantiki OS consists of a kernel which 
provides various services and a task scheduler.  The 
application project consists of multiple tasks each of 
which uses services provided by the kernel. Figure 5 
shows a block diagram for the Romantiki operating 
system. 

Task scheduling in Romantiki is cooperative which 
means that the scheduler will allow a high priority 
process to run only when the current task yields the 
control to the scheduler. The scheduler of Romantiki is 
based on a bitmap scheduler  [16] with 31 tasks allowed in 
the system. Each task has a unique priority between 1 and 
31.  

enum
{
    BF_FINISHED, 
    BF_BLOCKED 
};

#define BFD char 
#define BF_BEGIN    static unsigned short local_cont=0; \ 
                  switch(local_cont) \ 
                  { \ 
   case 0: 
#define BF_YIELD     local_cont=__LINE__; \ 
      return BF_BLOCKED; \ 
     case __LINE__:; 
#define BF_END local_cont=0;} return BF_FINISHED; 
#define BF_EXIT local_cont=0; return BF_FINISHED; 
#define BFC(func) if ((func)==BF_BLOCKED) \ 
                                 { \ 
                  BF_YIELD;\ 
              } 

BFD cont_func(double* calc, int* res) 
{
     static int counter; 
     BF_BEGIN 
     counter=0; 
     *calc=1.0; 
     *res=CALC_IN_PROGRESS; 
     for (counter=0; counter<10; counter++) 
     { 
          *calc+=pow(*calc,3.5); 
          BF_YIELD 
     } 
     *res=CALC_DONE; 
     BF_END 
}

BFD block_func_nest_level_one() 
{
     static int res; 
     static double calc; 
     BF_BEGIN 
     res=CALC_IN_PROGRESS; 
      
             BFC(cont_func(&calc,&res)); 

     printf("Result=%f\n",calc); 
     BF_END 
}



Fig 5. Romantiki Operating System 

The uniqueness of the Romantiki OS is due to the use 
of local continuations to perform context switch.  

B. Local continuations library in Romantiki 

Romantiki OS uses local continuations to provide the 
functionality of blocking system calls. The library 
provides a number of features not present in other local 
continuation libraries. The features of Rmoantiki are 
summarized as: 
1) Provides an abstraction layer which hides the 

definition and management of continuation points 
away from the developer. This makes the code easier 
to write and maintain. 

2) Supports reentrant and non-reentrant blocking 
functions with different sets of macros. 

3) Reduced functionality of the local continuation library. 
Event handling is part of the intertask communication 
API and is integrated into the operating system kernel. 

4) The Romantiki OS local continuation library allows 
making blocking calls within nested functions which is 
standard practice in traditional operating systems. This 
makes it possible to adapt existing code into the 
Romantiki and maintain the same code-base between 
different operating systems. Other local continuation 
libraries integrated into real time operating systems 

such as Salvo RTOS [17] and FreeRTOS with 
CoRoutines  [10] do not provide this functionality.  

C. System Calls 

The Romantiki Operating System implements the 
following kernel services: 
1) Task manipulations: Task Creation, Task Startup, and 

Conditional Yielding 
2) Events: Event creation and Event triggering. Both can 

be executed at a task level or interrupt level. Tasks 
blocks waiting for an event using 
WaitSingleEvent Tasks can also wait for multiple 
events using WaitMultipleEvents

3) Timer API: OS_Sleep blocks the running task for the 
given number of milliseconds, while getOsTick
Gets the snapshot of the operating system tick counter. 

4) Semaphores: implements both semTake and 
semGive.

5) TCP/IP Socket API: Provides TCP/UDP Interface. 
The system call API is small compared to the 

traditional operating systems. The typical functionality of 
task deletion, suspension, dynamic memory management 
and message queues is not part of the kernel. It is possible 
to implement some of the above functionality in the 
application level based on the project requirements. 
However, many embedded systems can be implemented 
without the above functionality. Moreover, leaving this 
functionality outside the scope of the OS kernel makes it 
possible to create a simple operating system which is easy 
to learn and use in many embedded applications.  

D. Events in Romantiki 

The Romantiki operating system uses events as a main 
mechanism for inter-task communication and it builds 
more advanced objects such as timers, sockets and 
mutexes using events. In Romantiki, a task can wait for 
one or more events while other tasks or interrupts trigger 
events. The functionality of the event subsystem in 
Romantiki is similar to Event API in Windows  [9]. The 
event API consists of 2 function groups: 
1) Trigger Event. This is a non-blocking function which 

can be called from tasks and interrupts 
2) Wait For Event(s). The calling task is suspended until 

one or more events it is waiting for have been 
triggered. 
Each event in Romantiki has an event control block 

(ECB) associated with it. Since tasks in Romantiki can be 
blocked waiting for events, unrelated events should not 
unblock the waiting task. Therefore, each ECB contains a 
pointer to the Task Control Block (TCB) of the task 
which is currently blocked on the event. Other fields in 
the ECB contain event status and configuration 
information. 

 The event triggering function is part of the kernel. 
Therefore, it sets the task pending as soon as the event is 
triggered. The diagram below in Figure 6 demonstrates 



the process of event handling and an interaction between 
an interrupt, scheduler and a task. 

Fig 6. Interaction between events and the ECB 

There is a limitation associated with events in 
Romantiki that only one task can be blocked on a certain 
event at a certain instance of time.  

E. Tasks in Romantiki 

In Romantiki a task can be in one of the 3 states: 
blocked, pending or running as shown in Fig. 7.  The 
scheduler maintains a list of pending tasks. The pending 
list is updated during event triggering or conditional 
yielding. When the currently running process yields, the 
scheduler gets a chance to run. It selects the highest 
priority task from the pending list and invokes its 
processing function. 

Fig 7. State diagram representing task state. 

F. Conditional Yielding 

Yielding is a common mechanism in cooperative 
operating systems to allow other tasks to run while one 
task executes long running operations such as complex 
arithmetic. During the process of yielding, the scheduler 
gets control and it selects the next task from the pending 
list. If there are no other tasks present in the pending list, 
the current task is re-invoked.  

In an operating system where each task has a unique 
priority, a task should yield only if there is a higher 
priority pending task. Therefore, the use of an 
unconditional yield statement results in a wasted 

invocation of the scheduler and frequent rescheduling of 
the currently running task. 

Romantiki operating system avoids the inefficiency of 
unconditional yielding by providing a construct which 
forces the task to yield only when higher priority task is 
pending. It is possible to provide this functionality since 
all the inter-task communication mechanisms are 
implemented using events and each task has a unique 
priority in the system.  

This functionality is implemented by allowing the 
developer to insert special command 
“PREEMPTION_POINT” into his code. This command 
is a macro which contains the following functionality: 
1) check global variable “preemption_request”. 
2) If “preemption_request==TRUE” then YIELD.
3) Otherwise continue execution of the current task.  

The preemption_request variable is updated inside the 
event triggering function “asyncTriggerEvent”
which checks whether or not the task waiting on the event 
has a higher priority than the currently running task.  

Figure 8  provides an illustration of the conditional 
yielding operation. Each state transition is marked with a 
number which indicates the sequence of that specific 
event.

.

Fig 8. Conditional yielding 

G. Real-Time application support  

The real-time response can be accomplished on a 
cooperative basis if all the tasks do not run for a long time 
without yielding. This is accomplished by placing 
“PREEMPTION_POINT” macros across long running 
operations and various points in tasks.   

H. Overhead of Romantiki OS  

The Romantiki OS has a very small footprint. The core 
code of Romantiki requires 2.2 Kbytes of Flash and 316 
bytes of RAM. This measurement was done when the 
code was compiled for AT91SAM7X256  ARM 



microcontroller using GCC compiler 4.3.2 with 
optimization level –O2. 

The core of the Romantiki OS consists of the task 
handling API, scheduler, timer subsystem and event 
subsystem.  

I. Code Sharing.  

The Romantiki operating system is unique because it is 
based on a traditional multitasking model while using a 
single rewinding stack for all tasks. This approach allows 
creating projects which have footprint of super-loop 
programs while the application code is easily 
maintainable, extendable and can be shared with projects 
running on preemptive operating systems.  

The Romantiki OS uses a concept similar to Y-Threads 
where the developer needs to identify sections of the code 
which perform blocking calls and other sections which 
run-to-completion. This way, the developer needs to 
follow certain rules when defining blocking functions, 
while the non-blocking functions can use the unrestricted 
C language as they run to completion. 

A common API can be created which is used by 
applications running on Romantiki OS and traditional 
operating systems. The goal of this API is to create 
transparent OS abstraction layer which would allow 
common operations such as Task definition and creation, 
Event API, and Timer API 

The following are the details of the implementation of 
this abstraction layer in FreeRTOS preemptive operating 
system: 
1) The task definition and creation is accomplished via 

FreeRTOS task API.  
2) The task control block is extended to provide data 

storage required for the events associated with tasks 
3) Tasks in FreeRTOS are assigned individual stacks. 
4) Event API is implemented using binary semaphores 

provided by the FreeRTOS. 
5) Timer API is implemented using FreeRTOS timer 

subsystem. 

V. PERFORMANCE EVALUATION

In order to evaluate the Romantiki operating system, a 
typical embedded project was chosen and implemented 
using the same codebase under two operating systems 
Romantiki OS and FreeRTOS, a preemptive multitasking 
operating system. The test project implements an 
application where multiple protocols are multiplexed into 
a single communication channel. Many different 
applications are based on multiplexed channel model such 
as TCP/IP [7] DeviceNet [5] and MPEG-TS [22]. 

The test project runs on AT91SAM7X-EK [1] 
evaluation board and uses an Ethernet channel to 
implement multiple encapsulated protocols. The 
implemented encapsulation is much simpler than TCP/IP.  

In this project a number of tasks and API calls are used 
to implement the basic encapsulation and message 
transmission. There are also a large number of application 

tasks that use the encapsulation services to transmit 
messages. Each client and server application is 
implemented as a task in the operating system. This 
approach results in a large number of tasks and a multiple 
context switches to transmit and receive messages. Figure 
9 shows a block diagram of the test project. 

Fig 9. Test project for Romantiki 

The test project contains 16 tasks which implement 
encapsulation and variety of application protocols. The 
performance of the different platforms was measured 
using the setup described Figure 10. 

Fig 10. performance measurements for the test project. 

The absolute timing of network frames was captured 
using the network sniffer and results were averaged over 
5 samples for each platform. 

Table I shows the memory requirements and the 
request response cycle of Romantiki and FreeRtos 
running on the hardware mentioned above. 

TABLE I 
A comparison between Romantiki and FreeRTOS 

 Request response 
cycle  sec 

Flash size in 
KB

RAN size in 
KB

Romantiki 664.0 12.956 14.732 
FreeRTOS 694.2 14.588 31.668 

Even though both operating systems are quite similar 
in size and share an identical application code, there is 
still about 10% difference in size of the application which 
is primarily attributes to the simulation of Event API in 
FreeRTOS. 



The biggest advantage of the Romantiki OS is the use 
of a single rewinding stack for all tasks. This eliminates 
the need to perform individual stack estimation where 
memory is commonly overestimated in order to 
accommodate future growth of the stack. In the 
FreeRTOS test project each application task is assigned 
its own 1 kb stack. In Romantiki a single 1kb stack is 
used for all tasks and additional storage within the task 
descriptor which is used to store variables of reentrant 
blocking functions. Since there are 16 tasks in the system 
the stack allocation represents a significant amount of 
memory resources on the FreeRTOS platform. The reason 
for the large stack in each task is recursive functions and 
callbacks which run to completion under Romantiki but 
can be preempted in FreeRTOS.  

The Romantiki OS provides 54% improvement in the 
memory use (RAM) for the test application compared to 
the same application running on FreeRTOS. Also the 
system is slightly faster under Romantiki. 

It is possible to avoid using the overestimation strategy 
and tweak the stack size for individual tasks on 
FreeRTOS. This will reduce the memory use in 
FreeRTOS application by a large margin. However it will 
increase the development time and make it hard to find 
problems in the system since for each software change, 
stack sizes need to be reevaluated. In Romantiki OS 
overestimation is performed over a single stack while in 
FreeRTOS it is performed over multiple stacks and this 
causes the large difference in memory use.  

VI.FUTURE WORK

The future work will concentrate on implementing  
TCP/IP functionality in Romantiki. We will also add 
preemptive multitasking support for Romantiki based on 
SST  [20]. 

VII. CONCLUSION

Romantiki was designed as a proof of concept of a 
multitasked operating system which fits the RAM and 
Flash footprint of corresponding superloop project. It is 
very compact and easily portable to different 
architectures.

When the number of application tasks is high, the 
Romantiki OS provides very significant improvement in 
RAM efficiency compared to traditional preemptive 
operating systems. 

This operating system allows constructing of complex 
devices using very small and cheap microcontrollers.  

The application code written for Romantiki can be 
recompiled to a traditional preemptive operating system 
such as FreeRTOS without making any changes to the 
application. This is accomplished by using a common OS 
abstraction layer when writing application code. 
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