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An Improved Toom’s Algorithm for Linear
Convolution

A. Elnaggar, Associate Member, IEEE,and M. Aboelaze

Abstract—This letter presents an improved Toom’s algorithm
that allows hardware savings without slowing down the processing
speed. We derive formulae for the number of multiplications and
additions required to compute the linear convolution of size =

2 . We demonstrate the computational advantage of the proposed
improved algorithm when compared to previous algorithms,
such as the original matrix–vector multiplication and the FFT
algorithms.

Index Terms—Convolution, permutation matrices, shuffle net-
works, tensor products, Toom’s algorithm.

I. INTRODUCTION

CONVOLUTION is a very important operation in signal
and image processing with applications to digital filtering

and video image processing. Many approaches have been sug-
gested to achieve high-speed processing for linear convolution
and to design efficient convolution architectures [1]–[5].

The proposed work is based on a nontrivial modification of
the one-dimensional (1-D) convolution algorithm presented in
[1] and shown in Fig. 1. Using an alternative (permutation-free)
construction, we show that the number of lower order parallel
convolutions (Stage #2 in Fig. 1) can be reduced from three to
only two, while keeping the regular topology and simple data
flow of the original very large scale integration (VLSI) architec-
ture. Our methodology employs tensor-product decompositions
and permutation matrices as the main tools for expressing DSP
algorithms.

Let and be two sequences of length . The
linear convolution in matrix form is given
by , where is the convolution matrix
defined by [1]

(1)

where

(2)

(3)

(4)
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Fig. 1. Original realization of the 1-D convolution algorithm.

(5)

represents a shuffle permutation matrix oninputs with
stride , and represents the tensor-product [6]. Equation (1)
can be realized by cascading the three stages: preaddition stage

followed by one stage of multiplications , followed by
a postaddition stage as shown in Fig. 1 [1].

II. I MPROVED PREADDITION AND POSTADDITION

Using the tensor-product property ,
where [4]–[6], the term con-
tained in (3) can be simplified to

(6)

Since the tensor-product is commutative and from (6), then

(7)

But since where

(8)

From (7) and (8), we have

(9)

Therefore, we can write as

(10)
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Fig. 2. Realization ofQ . (a) Original realization. (b) Shuffle-free realization.

Fig. 3. Realization of eight-point convolution. (a) Shuffle-free architecture. (b) Multiplexed architecture.

By decomposing the two permutations and
in (10) into their serial forms [6], can be simplified to

(11)

Note that the above expression for does not include any (ex-
plicit) permutations. The realization of ( ) using the
original form of (3) and the modified shuffle-free representation
of (11) is shown in Figs. 2(a) and 3(b), respectively.

Even though the resulting circuits in Figs. 2(a) and 3(b) are
topologically equivalent, removing the shuffle-permutations
from the tensor formulations can simplify data movement.

Similarly, substituting for in (4) and applying sim-
ilar tensor-product properties [6], can be simplified to

(12)

The permutation-free recursive realization of the eight-point
convolution using three four-point convolutions is shown in

Fig. 3(a). We assume that each addition requires one unit of
time.

III. M ULTIPLEXED ARCHITECTURE OF THE1-D CONVOLUTION

A careful scrutiny of the realization shown in Fig. 3(a) reveals
that the data movement through the computational stages en-
counters different amounts of delays. In particular, the computa-
tions involved in the matrix affect only the middle four-point
convolution in the center stage. Thus, the top and the bottom
four-point convolutions can be computed one addition cycle
ahead of the middle four-point convolution. This means that
only two four-point convolvers are needed at a time. Therefore,
through the use of a multiplexer, either the top or the bottom
four-point convolver can be removed from the architecture [as
shown in Fig. 3(b)], allowing hardware savings without slowing
down the processing speed.

It should be mentioned that it would not be possible to ob-
serve the resource sharing shown in Fig. 3(a) without the im-
proved shuffle-free architecture. This is evident by comparing
the realizations of in the original form [Fig. 2(a)] and the
modified shuffle-free form [Fig. 2(b)].
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TABLE I
A COMPARISON OF THENUMBER OF ADDITIONS WITH OTHER APPROACHES

TABLE II
A COMPARISON OF THENUMBER OF MULTIPLICATIONS WITH OTHER APPROACHES

IV. COMPUTATION COMPLEXITY OF THE

IMPROVED ALGORITHM

From (3), the number of additions required is the number of
additions to compute the term . The rest are per-
mutations only. Therefore, the number of additions needed to
compute the preaddition stage is given by ( )

(13)

From (4), the number of additions is the number of additions to
compute the term plus the additions to compute

. The rest are permutations only. Since each of the three-
input adders used in computing the matrixcan be realized by
two two-input adders, the number of additions is given by

(14)

The matrix is a special matrix of zeros and ones and has
the property that the number of one-entries per row is either
one or two; all other entries are zeros. Moreover, the number of
one-entries per column is exactly one; all other entries are zeros.
Using these properties, we can derive modular realizations for
the matrix at different stages. For a convolution of size

, the coordinates of the one-entries are

where, , .
Let . Then, the coordinates for the one-entries

become . Now, observe that if
while varies over its entire range, then the set of coordinates for
the one-entries is given by , which describes an
identity matrix that occupies rows 0 to and columns
0 to of the matrix . Similarly, when
and varies over its entire range, the set of coordinates for the
one-entries is given by ,
which describes another identity matrix placed in rows

to and columns to . Finally,

when and varies over its entire range, then the set of
coordinates for the one-entries is given by

which describes the third identity matrix placed in rows
to and columns to .

Finally, notice that there is no overlapping between the row
coordinates of and , which means that each row of the
matrix will contain only two one-entries at the row coor-
dinates specified above and only one one-entry in the remaining
rows. Since the number of additions required is equal to the
number of these rows with two one-entries, the number of addi-
tions to compute is given by

(15)

Therefore, from (14) and (15), the number of additions needed
to compute the postadditions is given by

(16)

From (13) and (16), the total number of additions needed to
compute -point ( ) convolutions is given by

(17)

Since is a diagonal matrix of order , applying the matrix
implies performing independent elemenwise multiplica-

tions, which can be done in parallel. Therefore, the total number
of multiplications required is equal to the number of multiplica-
tions in the single-core stage and is equal to[1].

Tables I and II show the computational advantage of the pro-
posed improved algorithm when compared to previous algo-
rithms, such as the original matrix–vector multiplication and
the fast Fourier transform (FFT) algorithms. For example, al-
though the number of additions of the proposed algorithm is
nearly twice that of the FFT, the number of multiplications is
less by 70% for the case .
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V. CONCLUSIONS

In this letter, we presented an improved Toom’s algorithm
that allows hardware savings without slowing down the pro-
cessing speed. We demonstrated the computational advantage
of the proposed improved algorithm when compared to pre-
vious algorithms, such as the original matrix–vector multipli-
cation and the FFT algorithms.
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