
/^
@ 'V , t Computer Graph ics , Vo lume 24. Numoe. .1 l - : - . '

Merging BSP Trees Yields Polyhedral Set Operations

Bruce Naylor*. John Amanatidest and William Thibaultf
*AT& T Bell Laboratories

tYork University
tCalifornia State Universitv at Havward

. {bstract

BSP trees have been shown to provide an effective repre-
tentation of polyhedra through the use of spatial subdivision,
;nd are an alternative to the topologically based b-reps. While
?sp tree algorithms are knownfor a number of important opera-
:ions, such as rendering, no previous work on bsp trees has
trovided the capability of performing boolean set operations
tetween two objects represented by bsp trees, i.e. there has
leen no closed boolean algebra when using bsp lrees. This pa-
.er presents the algorithms required to perform such opera-
:ions. In doing so, a distinction is made between the semantics
,f polyhedra and the ntore fundamental mechanism of spatial
tartitioning. Given a partitioning of a space, a particular se-
nanlics is induced on the space by associating attributes re-
:ired by the desired semantics with the cells of the partition-
.tg. So, for exarnple, polyhedra are obtained simply by associ-
.;:tng a boolean attribute with each cell. Set operations on
',tlyhedra are then constructed on top of the operation of merg-
:g spatial partitionings. We present then the algorithm for',rrging two bsp trees in^dependent of any attributeslsemantics,
:,d then follow this by the additional algorithmic considera-
. 'ns needed to provide set operations on polyhedra. The result

-ror!;.t^Or"
and nurnerically robust algorithm for set opera-

I n t roduc t ion

'.'lcthods for representing geometric objects is an issue of con-
lerable importance to discipl ines dealing with geometric

. mputation. Several different representations, such as bound-
,-\-representations (b-reps), octrees, and csg trees, are cur-
rrlly in use, and a number of new approaches are bcing cx-
,.red by various researchers. As in all computation, the data

-lresentation/structure determines the algori thms that. arc
-':ded to provide the operations associated with any semantic
nain. And i t is the eff iciency and simplici ty of the algo-
:rms operating on the data structures that determincs thc at-

',.-tiveness of a particular representation.

-''11\sion to copy without fee all or prt of this material is granted
. rded that the copies are not made or distributed for direcl
rrercial advantage, the ACM copyright notice and the title of the

- r.ation and its date appear, and notice is given that copying is by
' ' :rrrsion of the Association for Computing Machinery. To copy

. :* 1se, or to republish, requires a fee and/or specific pemission.

Constructive solid geometry introduced the explicit use c:
the paradigm of constructing complex objects from combina
tions of other usually simpler objects. This methodology' is
built upon the mathematics of set theoretic expressions. Thesc'
expressions are analogous to parenthesized boolean expres,
sions, but the variables are instead subsets of a Euclidean D-di
mensional space and the operations include, in addition to rhe
analogous regularized boolean set operations, affine transfor
mat. ions. Instancing, i .e. the ut i l izat ion of named sub-expres-
sions, is also a part of this method.

These expressions define a value and they can, at leasr in
principal, be evaluated to produce this value. For example, ra1,-
casting evaluates the expressions in a lD sub-domain of the
typically 3D domain, and so solves a simpler problem: classify
a line with respect to the expression. When the operands are re-
stricted to polyhedra and are represented by b-reps, then any
number of algorithms are known for evaluating such an expres-
sion (see for example [Mantyla 88] or [Hoffman 89]).

The methodology underlying b-reps is that of the direct rep-
resentation of the topology of a polyhedral surface/boundary.
Thc topological approach requires the decomposition of a D-
spacc polytope into connected components of all dimensions
d, 0 < d (D, and explicitly encodes rhe connectivity/incidence
among these components. Thus, the methodology dist in-
guishes for every d, 0 < d < D, affine subspaces containing
sets of d-manifolds (shells), preferably with their relative con-
tainment (which shel ls are inside which other shel ls), along
with their connected set of d-1 dimensional boundary elements
and the connectivity of these to other elements outside of their
affine subspace, and so on recursively in dimension.

B-reps, while widely used, possess a number of inherent dif-
ficultics in tcrms of thcir representational power. The reliance
on thc concept of manifolds is at odds with the need for permit-
ling non-manifold boundaries, i.e. the presence of regions on
thc boundary whose neighborhood is not homeomorphic to an
e-ball of some affine subspace. (However, this problem is fix-
able.) A second is rhe inability to represent sets whose bound-
ary is unbounded, such as a linear halfspace.

On the algorirhmic side, performing set operarions wirtr b,
rcps rcquires expl ici t detection of the co-incidence of al l C(D.
2) combinations of the variously dimensioned elements (e.r
facc-face, iace-edge, edge-vertex) along with some appropn::;
action for cach. And the fundamental importance of incidcn;-'
to the topological methodology exacerbates the alreadv Cr:: ;
cult problem of numerical robustness. Addit ional ly, cf i ic:. ' : . .
considerations necessitate some kind of spatial search .: :--
ture, one that is extr insic to the representation and is rr: :- ,
an axis-al igned spatial decomposit ion. Therefore, ir : : . -

ACM-0-8979 | -344-2l90rc08/01 l5 500.75

v I S R A P H 9 0 . D a l l a s A u o u s t 6 - 1 0 , 1 9 9 0

uansiorm *ith the represenlation and so must be reconstructed
after each transformation.

An alternative that has been evolving throughout the decade
of the 80's is the binary space partitioning tree. The fundamen-
tal methodology underlying bsp trees is spatial parr ir ioning.
Hyperplanes are used to recursively subdivide D-space to creatc
a disjoint set of D-dimensional cel ls. Each cel l is rhen desig-
nated as either in the interior of the set or in the exterior. Thc
boundary of the set need not be represented explicitly as it is
derivable from the cells. The representational power of linear
bsp trees is the class of l inear sctsl, which includes l inear
polytopes. The methodology of spal ial parr ir ioning ignores
all topological properties of the sct, and so bsp tree algorirhms
treat all topologically distinct sets idenrically, nor is any dis-
tinction made between convex and non-convex sets. Thus the
entire representational domain is treatcd uniformly, providing
a considerable improvement in the simplici ty of the algo-
rithms. In addition, the spatial search structure is intrinsic ro
the representation and so transforms with it.

I . BSP Trees

The most intuitive way to understand bsp rrees is through rhe
process that constructs them, and so we begin our introduction
to bsp trees with an example. Figure 1 illustrates the construc-
tion of a bsp tree. One bcgins with a region of spacc r, chooscs
some hyperplane h that intersects r, and then uses h to induce a
binary partitioning on r that yields rwo new regions: r.child- =

r n h- and r.child+ = r n h+, where h- and h+ are the negativc
and positive open halfspaces of h respcctively. Eac,h of these
unpartitioned children can in turn be partitioncd, and so on, to
producc a binary trec of rcgions.

tr,niria, treenA
In i t ia l reg ion F i rs t b inary New t ree

p a r l i t i o n i n g

z A r
/ \

/"t, ,/o\
r C 3 , E 6

, / \ / \
1 2 4 5

Spa t i a l pa r t i t i on ing Binary t ree

Figure I Const ruc t ing a bsp t ree

A bsp tree is then a hierarchical set of regions of a D-dimen-
sion Euclidean space with a relation of parent-child dcfined on

r We have only studied bsp trees of finite size (as in number of
nodes); but the concept can bc extendcd to trees that are
countably infinite.

l l 6

the set corresponding to "child formed by a binary partitioning
of parent". The graph of the relation on the set is a binary tree.
The process that builds bsp trees uses a single local operator,
viz. binary part i t ioning, which provides rhe consftuct ion:
(region, hyperplane) -> (region-, region+, binary partitioner).
A binary part i t ioner of a d-region R is any d-l subset of R
which partitions R into two disjoinr subsets, R- and R+, such
that any path betwecn two points, p- € R- and p+ e R+, must
intersect the binary partitioner. Recursively applying this op-
erator produces a bsp tree.

While the bsp tree is a geometric entity whereas its binary
tree is combinatorial, the ianguage of binary trees is often use-
ful for describing certain aspects of the bsp tree. By definition,
there is an isomorphism between bsp tree regions and binary
trcc nodes, and we denote the region of a node V as V.region
and conversely the node of a region R as R.node. Each internal
nodc V has an associated binary part i t ioner that parr i t ions
V.region, while each leaf node corresponds to unpartitioned re-
gion. These unpartitioned regions are called celis. Qn figure 1,
0re cells are labeled with numbers.) Each edge of the binary rree
corresponds to a halfspace: a left edge to the negative halfspace
of the parent node's hyperplane and a right edge to rhe positive
halfspace. We can tllen define any region R as the intersection
of open halfspaces corresponding to edges on the path from the
root to R.node. (In figure 1, cell 3 = A- n B+.; Thus, if the ini-
t ial rcgion, typical ly al l of D-space, is a convex and open set,
it follows that all of the regions of the tree are convex and
open scts.

The binary partitioner of a partitioned region R, denoted as
R.bp, is comprised of a hyperplane, bp.hp, a sub-hyperplane
(or sub-hp), bp.shp, which is the intersection of R.bp.hp with
R, and its two halfspaces bp.hs- and bp.hs+. Every region R is
the root rcgion of some bsp tree T, denoted as R.tree, and the
symmctrical rclation is denoted as T.root_region (to unambiva-
lcntly denote the set of points corresponding to T.root_region,
as opposcd to thc da ta s t ruc tu re , we may a lso use
T.root_region.domain). The two subtrees are denoted as
T . n e g _ s u b t r e e a n d T . p o s _ s u b r r e e l y i n g i n
T.root_region.bp.hs- and T.root_region.bp.hs+ respectively.
The sct of cells corresponding to the leaves of T together with
thc sub-hypcrplanes of i ts internal nodes forms a part i t ioning
ol T.root_region, and is dcnored as T.parri t ioning.

I l e v i e w ' o f p r e v i o u s w o r k

Thc original context in which the bsp tree was developed is
that of rendcring. The linearity of borh planes and viewing rays
mcans that i f a ray intersects a plane i t does so at only one
point. And so the plane dividcs the ray into near and far sec-
t ions. This permits inducing a visibi l i ty priori ty ordering on
the threc subspaces formed by the plane: near halfspace ->
plane -> fru halfspace. Given a bsp tree T, derermining this
ordcring at every node of lhe tree in a recursive manner pro-
vides a total ordering of the elements of T.part. ir ioning (see
ISchumaker et al 69] or [Sutherland, Sproul l , Schumaker 74],
and IFuchs, Kedem, Naylor 80] or [Naylor 81]).

These techniques were extended to ray-tracing polyhedra and
non-l incu csg-dags in [Naylor and Thibaulr 86]. This work led
to the association of attributes at the cells and the overt idea of
bsp trees as a represenration of polytopes. In [Thibault and
Naylor 871 and [Thibaulr 87], several new algori thms were in-
troduccd. Conversation from a b-rep to a bsp tree and point
classi[icat ion algori thms were dcrived by extending earl ier
vcry sintilar algorithms. The work with csg-dags led to an algo-

,/^
W try, 'Computer Graphics, Volume 24, Number 4, August 1990

I

, c
.n

i S

' .c

. i -

)n ,

A S

I N

' it.t

J t s

rays
one

ieC-

s o n
d - >

: rhis
pro-
lsee

r 141,

:r and
rk led
ica o f
.: and
: :a ln-

l point

r .irlier

:. rlgo-

::thm for evaluating a csg expression in which the primitive
bjects are polyhedra each represented by a b-rep, to yicld a

.rngle bsp tree corresponding to the expression's value. An
:llier idea of inserting moving objects into a bsp tree led to an
,igorithm for evaluating a polyhedral set opcration between a
'sp tree and a b-rep to yield a bsp Eee, i.e. bspt <op> b-rep ->
-spt. Finally, algorithms were given for generating the poly-
-.:dral boundary as either a set of convex polygons representcd
'r' a list of vertices or as a set of edges.

In [Bloomberg 86], very similar ideas are developed, and an
.igorithm for bspt <op> bspt -> brep is given which classifies
::ces of one tree with respect to the other; but no subtrees are
-lassified atomically. Even more recent work on bsp trees has
.'rovided a means of generating shadows for polyhedral models
Chin and Feiner 891 , interactive object design and view vol-
-ne cl ipping [Naylor 90a1, radiosity [Fusse]l and Campbcll
. ,11, as well as algori thms with asymptotical ly improvcd
runds for constructing bsp trees from a set of faces in 3D and
-Jges in 2D (i.e. conversion from b-rep to bsp tree) [Paterson
'rd Yao 891 and [Paterson and Yao 90]. In [Tones 90], a ncw
:catment is given of the original problems addresscd in
Schumaker et al 69] of constructing an inter-object bsp ree of

:::oving objects, where the individual objccs are represented as
^sp trees.

t ieomet r ic mode l as a t t r ibu tes on a space

ine motivation for inducing a part i t ioning on a space S is to
: ' :ovide a means of dist inguishing points in S through the as-
.. ,cia! ion of arbitrary attr ibutes with any of i ts points; that is
. provide the mapping Model(X e S) -> Attributes. Wc usc

.::e bsp tree to implement this general function. We associatc
^ith each element of our part i t ionings (cel ls and sub-hps) a sct

i C0 or highcr continuous functions whose domain is consid-
-:cd to be restr icted to that element. This providcs a quite gen-
-:r l mechanism for constructing complex discontinuous func-

.Jns on S that are piecewise Cu. Howcucr, wc wil l resrict our
,:tention in this paper to the problem of represent regular sets,
. h ich requ i res the s imp les t poss ib le se t o f a t t r ibu tcs ,
"lembership : { In, Out J. Nonetheless, the principal result of
:is paper is the merging of two independent bsp tree spatial

: 'ut i t ionings both defined on S. This merging opcration is
-ompletely independent of the semantics of any attr ibule
.:ace, and requires only the ability to determinc whcthcr the at-
:ibute space of two elements can be represcnted by a single at-
.:rbute space. Set operations are thcn constructed on top of this
:rcrging operation.

IL Merging Trees

lhe most primit ive operation then is merging two spatial par-
.. i ionings : given part i t ionings of the same space, Pl and P2,
:orm a new partitioning P3 = Pl + P2 from the pairwise intcr-

\cct ion of the cel ls of Pl and P2, i .e. a cel l c3 e P3 c+ f

: 1 e P 1 , c 2 e P 2 , s . t . c 3 = c l n c 2 , c 3 * O .
i lerging can bc i l lustratcd by simply ovcrlaying lhe two part i-
:ronings on top of each other, as shown in f igure 2.1.

We wil l then merge two trees T1 + T2 -> T3, s.t .
T 3 . p a r t i t i o n i n g = T l . p a r t i t i o n i n g + T 2 . p a r t i t i o n i n g .
However, since bsp trees are a hierarchy of regions, we wil l
:eed to do somewhat more than merely merge their part i t ion-
rngs. Nonetheless, the algori thm to perform merging of bsp
:rces is fairly simple and recursive.

T l . p a r t i t i o n i n g T 2 . p a r t i t i o n i n g

T l .pa r t i t i on ing + T2 .pa r t i t i on ing

I . i g u r e 2 , 1 M e r g i n g p a r t i t i o n i n g s

As with most bsp tree algorithms, we can understanding tree
mcrging in tcrms of the paradigm of inserting an object into a
trec; in this case, the object is a tree as well. @elow, we will re-
lax this asymrnetrical view). As always, we need the two basic
bsp trce operations: performing a binary partitioning of the
object if at a partitioning nodc and exccuting a cell <op> object
when at a leaf.

Performing a binary partitioning of a bsp tree by the binary
part i t ioncr of a node provides (Bspt, Bp) -> (iNegHs,
inPosHs : Bspt); that is, a trec is spl i t by a binary part i t ioner

to y ie ld two t recsT- =T n bp .hs- andT+=Tn bp.hs+. A Ce l i
<op> Trcc routine is importcd by thc tree mcrging routine, and
it is this routine that embodies the semantics of the applica-
t ion. I ts function is to merge the single set of attr ibutes of a
ccll with the attributes of a tree. When the semantics is that of
sct operations on polyhedra, the spatial structure of the result
will be eithcr that of the cell or the tree (the specifics are dis-
cussed below in section V).

Givcn these two operations, the algorithm partitions one
trce, say T2, by the binary partitioner at the root of the other,

T1. The two resulting trees, T2- andT2+, are defined on exactly
t h e s a m e r e g i o n (d o m a i n) a s T 1 . n e g _ s u b t r e e a n d
T1.pos_subtree respectively. Thus, we have created two new
sub-problcms, each identical in form to the original problem:
mcrge two trccs cach of which part i t ion the same subspace.
Whcn a ccll is rcached, the semantics-dependent Celi <op> Tree
routine is cal lcd. Thc basic algori thm is given in Figure 2.2.
An i l lustrat ion of tree merging appears in Figure 2.3. As one
can sce, each cel l of T1 is replaced wi0r that subset of T2 that
l ies in that ccl l .

While f igure 2.2 provides the essentials of the merging al-
gorithm, lhere remain a number of secondary issues. The first
of thcse arises from the fact that the algorithm is completely
symmctric with respect to its two operands, so one has the op-
t ion of choosing at each recursive invocation of Merge_Bspt0,
whether to partirion the first tree by the second or the second
by thc first. A method Choose_Partitioner$ can be provided to
Mcrge-BsptQ for this purpose, and may enforce whatever pol-
icy is appropriate for the current usage. (Note that since the
merge opcrations may be used to provide a non-commutative
opcrator, thc ordcr of the operands must be preserved by having
two distinct CASEs, one with T1 as the partitioner and one for
T2.)

1 1 7

SIGGRAPH '90, Dal las, August 6-10, 1990

Merge_Bspts : (Tl, T2 : BsPt) '> BsPt

T y p e s
Part i t ionedBspt : (InNegHs, inPosHs : Bspt)

I m p o r t s
Merge-Tree-With-Cel l : (T l , T2 : Bspt) -> Bspt
Part i t i lon-Bspt : (Bspt , BP) - t Par t i t ionedl lspt

D e f l n i t l o n
IF T1. is-a-cel l OR T2. is-a-cel l

THEN
VAL := Merge-Tree-With-Cel l (T1 ' T2)

ELSE
Par t l t i on -Bsp t (T2 , T l . r oo t - reg ion .bp) ' >

VAL.neg_subtree : =
Merge_Bsp ts (T l . neg_sub t ree ,

V A L . p o s _ s u b t r e e : =
Merge_Bsp ts (T l . pos_sub t ree '

VAL . roo t - reg ion := T l . r oo t - reg ion
END If

RETURN VAL
END Merge_Bspts

Figure 2.2 N{erg ing I tSP Trees Algor i thm

User defined semantics.

T2_part i t ioned

T2_par t i t i oned . i nNegHs)

T2_pa r t i t i oned . l nPosHs)

x

,zt\
/ \

T 1

Merg ing t rvo t rees

binary partitioner iire independent of those of the subtree, then
this subspace must be taken into account as well when deter-
mining homogeneity. Note that in the case of polyhedra,
binary partitioner attributes, i.e. the faces of the polyhedra, are

not independent; they are a function of their neighborhood of

c c l l s .

I I I . B inary Par t i t ion ing o f a BSP Tree

Wc now address the problem of partitioning a bsp tree. Given a

bsp trce T and a binary partitioner P defined on the same region

of space, we want !o form two trees, T- and T+ such that T- = T

, /o \

/\ /or
/ \ / \

I i i gure 2 '3

Secondly, it may be necessary to perform merging of at-
tributes in the sub-hp of the bp that is used as the pxrtitioncr.
This can be handled by a Merge-Bp-Attributcs0 method For

representing polyhedra, these attributes are the faces of the

polyhedra and the requisite routines are discussed below in scc-

tion VL
Finally, it is desirable to perform condensation When thc

attributes defined on Tree.root-region.domain are homoge-
neous, there is no reason to maintain a parlitioning of the do-
main, and so we will condense the tree into a single cell. Undcr
the recursive assumption that lhe two subtrees are already con-

densed, determining homogeneity requires first that they both

be singular, i.e. comprised of a single node, and then that their

attributes be identical. If attributes defincd on the domain of the

l l 8

T 2

/<'6"R'i"
r2

@ & "o-*o, Graphics,

. . : d T + = T n P . h s + , w h e r e R e g i o n s (T -) = { r - l r - = r

r e Regions(T), and r- * A I nd similarly for
, T -) .

-.,xrpute the two trees result.ing from this operarion, we
.e again use the notion of insert ing a geometric enti ty
- ' tree; in this case, the enti ty is a binary parr ir ioner.

- irr t ion process wil l identi fy which regions of T l ie en-
.: . P.hs-, or entirely in P.hs+, or are intersected by P.
:.-.rt insertion visits exactly those regions that. are inter-

, ri P). Accomplishing this requires determining rhe rela-
:-::ial relationships of two bp's and, when they inrersecr,
' : each bp by the hyperplane of rhe orher. This opera-

., * ell as the representation and generation of sub-hp's is
- . :d below in scction IV.
. : have the usual form of first distinguishing berween cell
.::;tioning nodes (singular and non-singular trees), and in

., .e of a part i t ioning node, performing a binary parr ir ion-'
:he inserted entity, i.e. the partirioning bp. Partitioning

.. l r ivial: one needs only to return two copies of that cel l .
. .- . : t i t ioning node, however, the issue is more involved.

. :rrst step is to perform a bi-partitioning between P and
::at is, each bp is classif ied with respect to the other

r standard binary partitioning cases:
. , ca t ion : { InNegHs, InPosHs, InBoth , On } .
. -1.1 shows the four possible geometric configurations.

. siiown are InNegHs/InPosHs, InPosHs/InPosHs, and On-
.:al lel , since they have the same gcomctry but with one
:mal f l ipped.) The routine ro perform this operation, Bi-

. ; t i t ion_Bps0 is discussed in section IV.

I nPosHs / InNegHs InNegHs / InNegHs

On one s ide

To see this more clearly, figure 3.2 attempts ro illusuale
what is taking place for the InBoth case in which four sublrees
are generated, two from each subtree ofT. During the process of
inserting the bp P into the tree, one views the activity primar-
ily in terms of the two halfspaces of T.root region: we con-
struct P- = P n T.hs- and P+ = P n T.hs+. In contrast, the re-
sult, which is formed after any required subrree parririoning, is
instead in terms of the halfspaces of P: T+ = T n P.hs+ and T- =

Tn P.hs-, which also entai ls computing T.bp- = T.bp n P.hs-

and T.bp+ = T.bp n P.hs+. So we have T- being formed out of
pieces from both of T's two subtrees :

T ' . n e g _ s u b t r e e l = T ' s _ n e g _ s u b t r e e . i n N e g H s
T ' . p o s _ s u b t r e e : = T ' s _ p o s _ s u b t r e e . i n N e g H s
T - . r o o t _ r e g i o n . b p : = T ' s _ b p . i n N e g H s

. . . +
ano s rml la f l v lo r I ' .

s u b t r e e +

p o s
.Dp

T.bp
u b t r e e +

n e g _

Before Par t i t ion ino Af te r Par t i t ion ing

p o s _
r o o t . b

l ree

r o o t . b p
s u b t r e e

A n t i - p a r a l l e l

On
Figure 3.1 Spat ia l re lat ionships betrveen two

b ina ry pa r t i t i one rs

n e g _

Ir igure 3.2

InNegHs VAL.inPosHs

Part i t ioning a tree for InBoth case

The cases in which P is entirely to one side of T.bp is illus-
trated in figure 3.3. There are four instances of this case ob-
taincd by f i ipping normals; only one is shown here. For this
case T.bp and T.neg_subtree remain inract; only T.pos_subtree
is part i t ioned. The retum values are:

' f ' , n e g _ s u b t r e e
: = ' I . n e g _ s u b t r e e

' l ' - . p o s _ s u b t r e e
: = T ' s _ p o s _ s u b t r e e . i n N e g H s

' l " . r o o t _ r e g i o n . b p
: = T . b p

and

T + : = T ' s _ p o s _ s u b t r e e . i n P o s H s .
Analogous assignments yield the other three instances.

And finally, the third case of On requires no further parri_
t ioning and is given simply by selecring the appropriarr,
subrees :

I I i normals a re para l le l
.I'HEN

l ' - := T .neg_subt ree
T + := T .pos-subt ree

ELSI '
' l + := ' l ' .neg_subt ree

T - : = T , p o s _ s u b t r e e
ENI)

I nBo th

. lhen

ilcter-

hcdra,
I i] , AIC

ood of

Civen a

t region

r : T - = T

While each of the seven cases are Feated separately, they all
share the basic premise that any subtree conraining the parri_
: ioner wil l need to be part i t ioned, and any that does not wi l l
reed no modif icat ion. So, the case where p's location =
InNegHs results in T.neg_subtree being parri t ionecl but not
T.pos_subtree, and InPosHs requires the opposite tct ion,
InBoth entails parririoning both, and On neithcr. The parrs of
subtrees result ing from this recursivc part i t ioning are then
pieced together to form the two trccs whicir arc lhc rcturn valucs
of this operation.

VAL.inNegHs

g
Da las August 6-10, 1990

VAL. inPosHs
Af te r Par t i t ion ing VAL.inNegHs

Figure 3 .3 Par t i t ion ing

It is important to note that any newly formed tree should
have the condensation operation applicd to i t . While not
needed for correctness, this can have a significant impact on
performance. Consider f igure 3.4 in which two complex
objects are each contained inside their bounding simplex. If
T2 is inscrted into T1, then T2 will be partitioned by X then Y
and then Z. At this point, the fragment of T2 inside T1's
bounding simplex will be condensed to a single out-cell, and

a tree for InPosHs case

so thc merging operation will be complete. Neither of the
subtrecs inside the bounding simplices will be visited during
this process.

With the dcscription of Partition-Bspt complete, we make
thc following observation : to merge T1 with T2, we can insert
T2 into T1, which entails the apparent paradox of inserting Tl
into T2 (actually, T1's bp's), but one piece at a time.

T 1

/ \
Y O

X \
A O

T 2
A

/ \
/ \ 0

n 0
n o

Binary t rees

Figure 3 .4 E f f 'ec t o f

IV. Representat ion and part i t ioning of binary
par t i t ioners

Part i t ion_Bspt rel ies upon Bi-Part i t ion_Bps as lhc basic
operation for determining the relative location o[two Bps and
for splitting them when the location is InBoth halfspaccs. To
provide this, we wil l need an expl ici t reprcsental ion of the
domain of a bp, i .e. of i ts sub-hp. This is unl ikc al l prcvious
operations on bsp trees, which require only hyperplane cqua-
tions and possibly a single "representative point" in thc inte-
r ior of a sub-hp (as in the set operations in [Thibault and
Naylor 871). Determining the respective locations of two
binary partitioners that partition the same region R can be
based on computing their inl.erscct.ion :

P l . s h p n P 2 . s h p
- (R n P l . h p) ^ (R ̂ P 2 . h p)

= P l . s h p n P 2 . h p .

120

After part i t ioning by X, Y and Z

c o n d e n s i n g d u r i n g p a r t i t i o n i n g

As lhc va]ue of R must appear in the expression, we "encode" it
into a sub-hp. However, when there is no intersection, we need
to know in which halfspace thc sub-hp lies, and in this case the

routinc that computes Pl.shp n P2.hp can tel l us only the
location of P1 with respect to P2.hp. Therefore, we wil l need to
cithcr use thc represent.at ive point method or perform the
complcmcntary opcration P2.shp n P1.hp.

In the curren! implcmentation, a sub-hp is represented by a
b-rep, and for the sake of simplicity we restrict the embedding
spacc to bc 3-dimcnsional so that the sub-hps are polygons.
Since sub-hps are convex, we can represent them using the
simplest represcntal ion: a l ist of vert ices.

Civen expl ici t sub-hps, the bi-part i t ioning operation is
comprised of two applications of the same operation: partition
a polygon by a plane. First Pl.shp is part i t ioned by P2.hp. We
thcn pcrforming lhe same operation for P2.shp with respect to
P 1 . h p

After part i t ionlng by X

s

,/^
W t ' .e t Computer Graphics, Volume 24, Nr,n ce. j r_:_s.

There is a one problem with using b-reps: sub-hps nray bc
:nbounded sets and b-reps can not represent unbouncicd scts
e . g . t h e s u b - h p o f T . r o o t _ r e g i o n . b p w h e n

T,root_region.domain = 3-space is a hyperplane). Our solution
:o this is to represent 3-space as a bounded set, in particular as
e box centered at the origin whose size is sufficienrly large to
rccommodate the geometric model. We call this the universe-
bor. Since geometric models typically require no more rhan 7
crdcrs of magnitude (e.g. from 1 mm. to I km), consrrucring a
.uff iciently large box is easi ly done wirhout compromising
:,umerical robustness appreciably, especial ly whcn using
Jouble precision.

To generate a representation of the sub-hp for thc bp at
some tree node v, we need to first construct a polygonal rcprc-
sentation of the bp's hp [Thibault 87]. This is done by projecr-
ing one of the sides of the universe-box onto thc hyperpliLne.
The side chosen is the one whose the ratio of its area to lhar of
its projection is closest to unity. To achieve this, wc choosing
the side whose normal makes the smallest anglc with thar of
the hyperplane.

Given this "hyperplane as bounded polygon", *'e inscrr ir
into the tree, partitioning it at each node as usual, but follow-
ing only the path that leads to the targct node v. Thus, when
our incipient sub-hp is InBorh, we rerain only thar half ri,hich
is in the region of the next nodc on the path. Whcn we rcach v,
we have the desired sub-hp. Given any bsp tree conraining no
explicit sub-hp's, we will perform this operation for evcry node
in the tree. (Rather than following a path from rhe root ro rhc"current"

node, we actual ly fol low the path in the opposite
direction, from the node to the root via parent links. This of
course is a unique path and avoids the issue in the root-to-node
order of knowing wherler ro follow the left or righr child.)

Anytime an affine transformarion is applied ro a rrcc, rhosc
sub-hp's which are "unbounded" wil l need to be recomputed
since they wil l no longer correspond to thc interscction of
their hyperplane with the universe-box. To faci l i rate rhis, each
sub-hp is taggcd to indicare whether i t is unboundcd, and i f so,
then regenerated when trtLnsformed. (lf one uscs thc first D+l
nodes to construct a bounding simplex, then only the f irst D
sub-hps of this simplex are unbounded, i .c int.ersect rhc uni-
verse box.) All other sub-hp's can bc transforrncd normally (by
thcir vert ices), since they wil l remain boundcd (under thc
assumption that the universe-box is suff icienrly largo).

V. Set Operat ions on Polyhedra

Once the mcchanism for merging spatial part i t ionings is in
place, performing set operations on polyhedra is a relarively
simple mat.ter. The merging proccss recurses unti l one of the
iwo operands is homogeneous, i.e. is a cell, at. w,hich point r.r'c
use a routine for mcrging cell attributes with those of some ar-
bitrary trce (which may also be a cell). For set opcrarions, lhis
arnounts to simply selecting either thc cel l or the rrcc, possi-
bly complemented, as a function of the mcmbcrship attr ibute
(Figure 5.1). Complementarion of a rrce involves simply rhc
boolean complementation of the membership atrributc. Figurc
5.2 illustrates the union of two bsp tree objecrs.

In general, there is more to do than this. If thcre ue othcr
attributes, such as color, index of refraction, density, or what-
ever, these will need to be mergcd in some appropriate way as
well. And so the above routine will need to be augmenrcd ro
handle these. (Exactly how a particular attribute, such as color
or transparency, should be merged in a union for instance, is
currently an unsettled issue). Note that this addirional merging
of attributes may generate condensable subtrees.

Cel f_SetOp_Tree: (T l , T2 : I lspt) -> I t rpr

VAL :=
IF T l . i s an In Ce l l

THtrN
CASE ope ra t i on

Union -> Tl
I n te rsec t i on -> T2
Di l ' ference -> Complement_I tspt(TZ)

Symmet r i c D i f f e rence ->
Comp- lement_Bspt(T2)

DNI)
E L S E I F T l . i s a n O u t C e l t'I 'HI'N

CASI i ope ra t i on
Union -> T2
In te rsec t i on -> T l
Di l ' ference -> Tl
Symmetr ic Di f ference ->

I]NI)

IiLSIi Rcpcat rhe abovc wirh T1 and T2 swapped.

I iND Ce l l _Se tOp_Tree

I . ' i gure 5 .1 Ce l l_SetOp_Tree fo r Set
O p e r a t i o n s

VI . Po lyhedra l F 'aces

While the above rout.ine covers "attribute
maintenance" for D-

dimcnsional ccl ls, thcre remains the same issue for the D-l
dornains of thc binary part i t ioners. For polyhcdra, the entire
boundary of thc set lics in the sub-hps, and while the boundary
is wholly derivable from the D-ccl ls, one may wish to expl ic-
i t ly represont lhe ser of boundary faces. The primary motiva-
tion for doing so is to provide the input rcquired by rendering
sysLems lhat arc based on polygon drawing. Using tire bsp trce,
onc can provide a visibi l i ty priori ty ordering of the faces to
such a systcrn. (Note that i f instead one uses ray-tracing, the
cxpl ici t rcprcscntation oI the boundary is unnecessary.)

-

The boundary of a set is prccisely those points whose E-
ncighborhood contains both interior and exterior points for all
e. Thus, any subset of a sub-hp which has an in-cell on one side
and an out-cell on the othcr will be on the boundary of the
polyhcdra. In f igurc 6, we i l lustratc this idca by showing the
boundary along with normals to thc faces oriented to "point"

to
thc cxtcrior. Note that a sub-hp may contain more than one face
and that thc face orientat ions may be either paral lel to the
hyperplanc orienl.at ion or anti-paral lcl .

Thcrc arc two possible approaches to face generation: either
in every trcc maintain faces as an intr insic component of the
rcpresentation, or delay creation of any faces unti l after an
entirc expression has been evaluated. Both approaches uti l ize a
neighborhood operati.on that. finds those cells in the neiehbor-
hood of a sub-hp, or equivalently, those cel ls whose borindarr
intcrsccts a sub-hp. Considcr any subtree T. I f we insert rhc
sub-hp at T.root_region into T.neg_subtree and then inro
T.pos_subtree, thc cells that are reached are precisely thosc in
thc sub-hp 's ne ighborhood. These ce l l s can be na tura l l r
grouped into thosc in the posit ive subtree and those in rhc
negative subtrce. In addit ion, ihe search of a subrree *i l l parr i-
t ion the sub-hp inro subsets that bound a single cel l , and so
wil l classify t i re sub-hp into " in" and "oul" subsers

L' SiGGRAPH 90, Da l las , August 6 -10 , 1990

1:,

x

, = { \ '

o\

/ \

. / Y t

/ \
0

ne g_su b t r ee

i n
i n
o u t
o u t

p o s _ s u b t r e e

i n
o u t
i n
o u t

c lass i f i c a t io n

i n
o n (p a r a l l e l)

o n (a n t i - p a r a l l e l)
o u t

Retaining the on fragments, separated into paral lel and
anti-paral lel l ists, as part of each binary part i t ioner providcs
the polyhedral faces. These faces, in fact, provide only a partiai
classification of the partitioner's domain. There are two kinds
of on-regions, paral lel and anti-paral lel , but in-rcgions and
out-regions are lumped together implicitly as not-on. Note that
these face fragments are convex, since they zre generated by
the intersection of halfspaces with their support ing hyper-

122

,zo\
/,,

1 0

Figure 6 Faces

0 1

of a po ly ' tope

So with this, generation of faces from a sub-hp is straight-
forward [Thibault 87]. First, classify the sub-hp with respcct tr-r
one of T's subtrees, say the negative subtree, and then classify
the result ing fragments with respect to the posit ive subtrce.
This yields fragments whose ncighborhood is "homogencous",

i.e. is the same for all points in the fragmcnt. With this infor-
mation, we can generate the following classifications:

f (' /
/

t \

1

5.2 Un ion o f t rvo ob jec ts

plane. To generate all of the faces of a ftee that contains ex-
plicit sub-hps but not explicit faces, one simply performs this
neighborhood operation for every binary part i t ioner in the
t rcc .

The alternative is to maintain expl ici t faces at al l t imes. So
the result of a single se! operation, T3 := Tl <op> T2, wi l l
entail generating all of the polyhedral faces of T3 before T3 is
used in any subsequent sct operations. The objective is the
sanre as before, to know the classification of all sub-hps, but
r ic approach is lcss direct. Instead of classifying sub-hps, we
cnrploy the fact that the faces of T3 are a subset of ttrose of Tl
and T2 combincd, and in effect classify only the subsets of sub-
hps "covcrcd" by the faces. Note that the addition of faces to
t h c r e p r c s c n ! a t i o n w i l l r e q u i r e e x t e n d i n g b o t h
Complcmcnt_Bspt0 to swap parallel and anti-parallel face lists
and Bi-Partition_Bp0 to partition zury faces lying in a binary
partitioncr (this will be needed only if its sub-hp is InBoth, and
thus thc sub-hp provides a "convex hull" test for the faces).

Wc will use a combination of two techniques already intro-
duccd: ccll <op> tree and the neighborhood operation. The first
is cmploycd undcr two circumstances. When, during the recur-
sive proccss of tree merging, one of the two arguments is a
ccll, thc routine Cell_SetOp_Tree0 is called. This executes"the
sct operation by returning one of the two arguments (possibly
conrplementcd), and so implici t ly classif ies any faces in the
p r o c c s s . T h c s e c o n d c i r c u m s t a n c e o c c u r s d u r i n g
Partition_BsptQ whenever the partitioning bp reaches a cell.
Its face fragmcnts can lhen have the same rules applied to them.
Thc only remaining case is that of on-faces. Whenever the On
case in Partition_Bspt0 occurs we will need to use the neigh-
borhood operation in leu of direct classif icat ion by cel ls. On-
faces from T1 (T2) will need to be classified with respect to the
subtrccs oi T2 (T1) (see [Thibault and Naylor 87] and [Naylor
9 0 a I) .

VI I . Numer ica l Robustness

The occurrence of numerical errors due to finite arithmetic has
bcen a nemesis of geometric computing since is inception. Its
ncgalivc impact is greatest when the result of a numerical com-
putation is used to discriminate logical alternatives in an algo-
r iLhm. This can lead to arbitrari ly "discontinuous" behavior;
that is, the output of the algorithm can be highly sensitive to

Figure

