
Algorithms for the Detection and Elimination of Specular Aliasing

John Amanatides

Dept. of Computer Science
York University

North York, Ontario
Canada M3J 1P3

Abstract

This paper introduces an algorithm that, given the
geometry and surface characteristics of an object (the
Phong highlight model is assumed), detects when specu-
lar or highlight aliasing is expected and indicates the cor-
rect sampling rate to eliminate it. This is accomplished
by noting the geometric properties of the surface, the
direction and distances to the eye and light sources, and
the specular shading parameters. Also, an auxiliary
algorithm is presented that eliminates the specular alias-
ing without increasing the sampling rate. It accom-
plishes this by clamping the specular function parame-
ters to values that will not introduce significant high fre-
quency components.

Keywords

anti-aliasing, shading, highlights, image synthesis

Introduction

An area of research in computer graphics that con-
tinues to receive a lot of attention is anti-aliasing
(Crow, 1977; Cook, 1986). Much work, however, has
concentrated with the edges of the display primitives,
noting, correctly, that the most noticeable aliasing arti-
facts would occur there. Unfortunately, this approach
has ignored another form of aliasing, that introduced by
the highlight or specular component of the shading func-
tion. For example, if we are rendering cylinders, the
highlight down the center of the cylinder may be quite
jagged if the surface is very shiny (Crow, 1981). These
defects are also sometimes visible when bump mapping
(Blinn, 1978). The standard approaches of anti-aliasing
in computer graphics will not correctly handle specular
aliasing. This paper will first review aliasing and then
three earlier attempts to solve the specular aliasing prob-
lem. It then introduces an algorithm for detecting specu-

lar aliasing plus a new method of specular anti-aliasing,
along with results produced using this new method.

Background

Aliasing is possible when the two dimensional
image functionI (x, y), representing the image on the
viewing screen, contains frequencies greater than those
that can be faithfully reproduced on the display device.
If we sample this function, the resulting pixel values will
not be correct. Aliasing is manifested in the form of
jagged edges, distortions of small objects, inconsisten-
cies in areas of complicated detail and in animated
sequences. To remove these errors, several techniques
have been advanced (Crow, 1977). We can sample the
image function at higher resolution. This expensive pro-
cess can diminish the problem but will not eliminate it.
The best approach is to filterI (x, y) before we sample,
and there are strong theoretical reasons for doing this
(Pratt, 1978).
Idealy, if we perform the following convolution

I ′(x, y) =
∞

−∞
∫

∞

−∞
∫ I (α , β) H(x − α) H(y − β) dα dβ

with the appropriate sampling filterH

H(u) =
sin(ω0u)

π u

we can generateI ′(x, y), a function that is identical to
I (x, y) except that it contains no frequency components
greater thanω0 (ω0 would be dependent on the output
device resolution).

Unfortunately, this convolution is impractical; it is
too expensive. Consequently, simplifications have been
used in computer graphics to compute the convolution in
reasonable time. The major simplifications are simpler
sampling filters and capitalization of the coherence prop-

erties of the image function.

Let us assume that the object is modeled with
polygons. The image function approximation begins
with the observation that as we sample along a polygon
the signal will change relatively slowly. It is only when
we cross polygon boundaries that great fluctuations in
intensity will occur. Thus we can assume that within a
pixel the intensity of each polygon is constant. This
implies we have to calculate the shade of each polygon
within a pixel only once, a great saving in computation.
Consequently, the area and position that a polygon cov-
ers within a pixel along with just one shade computation
for that polygon is enough to calculate that polygon’s
contribution to the intensity function at that pixel.

Over the last decade there have appeared many
papers indicating solutions to the aliasing problem that
are similar to the approach outlined above (Crow, 1977;
Catmull, 1978; Crow, 1981; Crow, 1982;
Carpenter, 1984; Duff, 1989; Tanaka, 1990) and, in
general, they work very well. What most researchers
have ignored, however, is that in regions where the sur-
face curvature of an object is large, another form of
aliasing becomes noticeable: specular aliasing. Consider
Plate 1. It consists of two cylinders, one slightly tilted,
each having a very shiny surface. A light source behind
the viewer introduces a narrow highlight that is visible
down the center of each cylinder. If we rotate the cylin-
der slightly, we see that the highlight breaks up, intro-
ducing aliasing artifacts. The high curvature causes the
specular component of the shading function (the compo-
nent most susceptible to orientation) to introduce high
frequencies intoI (x, y), frequencies that cannot be rep-
resented by the current sampling rate. This aliasing can-
not be removed by the traditional approaches to anti-
aliasing because of the assumptions they make to sim-
plify the low pass filtering. The problem does not occur
at the border of the cylinder (where most algorithms
expect it to be) but in the interior.

Previous Work

Solution 1

The first solution for performing specular anti-
aliasing was outlined by Frank Crow (Crow, 1982). He
performed this anti-aliasing by computing the specular
component at a higher resolution in pixels where the sur-
face normal changed significantly. The drawback to this
approach was that the user had to manually define a
"threshold curvature" which was then used to indicate
when higher resolution highlights were required. As no
information about the surface reflectance properties were
included (the highlight is also a function of surface char-

acteristics), this "threshold curvature" may not have been
an accurate indicator of specular aliasing for a particular
surface. Thus the user had to, at times, change the
threshold and recompute the specular component if the
aliasing was still noticeable (this manual approach would
be very inconvenient in animations).

Solution 2

The second solution was reported by Lance
Williams (Williams, 1983). It involves storing a spheri-
cal texture map representing the illumination from the
scene. The specular shading computation is replaced by
a look-up in the spherical texture map. Local surface
curvature is used to compute how much of the texture
map to integrate. Unfortunately this approach requires a
great deal of storage for the texture map, cannot deal
with varying surface shininess nor handle light sources
that are at a finite distance.

Solution 3

A third, more limited solution, advocated by Saito,
Shinya and Takahashi (Saito, 1989), for edges of planar
surfaces, consists of developing special-purpose cylinder
shaders and inserting thin cylinders over edges and
drawing them as wire-frames.

Detecting Specular Aliasing

In this section we will derive a specular aliasing
detection algorithm. The highlight function that we will
use, I=Kspeccosn(α), is Phong’s (Bui T. Phong, 1975).
As the parametern increases, the highlight becomes
more concentrated and the surface appears more glossy.
Let us look at the Fourier series of this function. Recall
that every even periodic function with a periodT can be
represented by the cosine expansion
(Hwei P. Hsu, 1970)

f (t) = 1
2 a0 +

∞

n=1
Σ an cos(nω0t) , ω0 =

2π
T

The cosine expansion of cosn(α) can be extracted from
(Oberhettinger, 1973):

cos2l (α) = 2−2l (2l)!
l

n=0
Σ ε n cos(2nα)

(l + n)!(l − n)!
,

ε0 = 1, ε n = 2, n = 1, 2, 3,. . .

cos2l+1(α) = 2−2l (2l + 1)!
l

n=0
Σ cos((2n + 1)α)

(l + 1 + n)!(l − n)!

If we look at this Fourier transform of cosn(α) we see
that the high frequency components increase asn does.
In fact, the highest frequency isn radians. For a givenn

there is a sampling step size,∆α n (∆α n = π /n), above
which aliasing is inevitable. To detect specular aliasing
we must detect situations during rendering where we go
above this sampling step size.

Consider the geometry of shading:

→
E

→
N →

L

ι

→
R

α

Figure 1

Here,
→
N,

→
L,

→
E and

→
R are unit vectors in the direction of

the surface normal, light source, eye and reflected eye
directions respectively. Changing any of

→
N,

→
L or

→
E will

changeα , theα of Phong’s highlight function. If any of
these change within a pixel when rendering, specular
aliasing may occur (Williams, 1983). Luckily, unless
the light source or eye are very close to the surface, their
effect is minimal. The surface normal, however, has a
more pronounced effect. It can change significantly
within a pixel, thus noticeably affectingα . If the surface
is shiny (a high value ofn), the change inα (∆α) within
the pixel can exceed∆α n (which is smaller for larger
values ofn) and aliasing results. Consequently, to detect
specular aliasing, we must, within each pixel, determine
how much the surface normal

→
N changes and relate it to

the maximum allowed byn. (Note: a change of
→
N by ∆

radians changesα by 2∆ radians).

The most straightforward way to compute how
much the surface normal changes is to compute the nor-
mal at the corners of the pixel and find the pair which
diverge the most (by computing the six dot products of
the various pairs of normals and finding the minimum).
The smallest of these six dot products,dot∆ →

N, is com-
pared to the smallest dot product allowed for the current
value of n, dot∆α n

(via a lookup onn into a pre-
computed table). If it is greater than the value in the
table, then no aliasing can occur. Otherwise, we have
detected the occurrence of specular aliasing. We thus
have derived a simple, analytic algorithm to detect spec-
ular aliasing on surfaces using the Phong highlight func-
tion. The only prerequisite is a good indicator of∆α .
Instead of using the normals at the corners of the pixel,
another possibility would be to use the curvature of the
surface and the size of intersection to compute∆α .

The above approach of finding the how much the
surface normal changes within a pixel has to be modified
slightly when bump mapping is used. In this case, one
can compute the change in normal when the bump map
normal is generated and use this value instead.

The algorithm described above is conservative.
Most of the energy in the power spectrum of cosn(α) is
in the lower frequencies with very little near the high
end. Consider the following figure:

0 200 400 600 800 1000

0

20

40

60

80

100

Maximum frequency

Cutoff
frequency

..
...
....

...
.....

.....
....

......
.....

.......
......

..

90%

99%

99.9%

99.99%

Figure 2

It is a frequency-frequency plot for several power levels.
The abscissa indicates the maximum frequency in the
power spectrum of cosn(α) (recall that the maximum fre-
quency isn radians) while the ordinate represents the
cutoff frequency below which a given percentage of the
power of cosn(α) resides. For example, ifn is 500, the
maximum frequency in the power spectrum is 500 radi-
ans while 99.9 percent of the power is below 52 radians.
Our table of minimum dot products could be computed
more aggressively so that we don’t hav e to perform spec-
ular anti-aliasing as frequently.

Once we have detected that specular aliasing is
occurring we must be able to suggest a sampling rate
that eliminates it. To do this we take the arc-cosine of
the normal-pair dot product,dot∆ →

N, (for efficiency we
could perform a table lookup for the arc-cosine) to get
∆α∆

→
N. We compare this with∆α n and use the resultant

ratio to indicate the oversampling rate.

Eliminating Specular Aliasing

We hav e just derived an algorithm for the detec-
tion of specular aliasing. Now we hav e to decide what to
do about it. Crow’s standard solution for removing this
aliasing can be used but it is unsatisfactory in that multi-

ple shading computations per pixel per polygon are
required; these are expensive. We will now derive an
alternate solution that requires only one shading compu-
tation per pixel, a much more frugal approach.

The purpose of anti-aliasing is to remove the high
frequencies in a signal that cannot be represented by the
current sampling rate. If we do not want to change this
sampling rate we must somehow change the signal so
that the unrepresentable frequencies are absent. One
way of accomplishing this low pass filter is described by
Norton, Rockwood and Skolmoski in the work they did
on texture mapping (Norton, 1982). Their original sig-
nal was constructed with a series of sine wav es, each
having a different frequency and phase angle. Their
method of anti-aliasing was to clamp out the sine wav es
that were too high to be represented and only use the low
frequency sine wav e components. This approach
inspired the specular anti-aliasing algorithm described
below.

A different method to perform specular anti-
aliasing involves clampingn to values that will not intro-
duce aliasing. By replacingn by a smaller value, we
guarantee that the new highlight function has no offend-
ing high frequencies. The new value ofn, n′, depends
on the sampling rate∆α →

N. What we are in fact doing is
replacing the user specified highlight function with a
duller one, one guaranteed not to alias. We only do this,
however, in problem pixels so that in regions where no
aliasing is occurring we use the original function.

The simple replacement ofn′ for n needs a little
enhancement before it becomes the complete anti-
aliasing algorithm. Replacing cosn′(α) for cosn(α)
removes the high frequencies from the original signal but
in the process it also boosts the lower frequencies, mak-
ing the surface appear brighter than before. Some sort of
normalization is in order. This normalization is encorpo-
rated in the algorithm if we multiply the new highlight
function, cosn′(α), by the ratio of Maximum[n] to Maxi-
mum[n′]. Maximum[] is an array that stores the value of
the first (and largest) component in the signal cosn(α)
for various values ofn. By performing the above nor-
malization we try to make sure that the overall level of
the clamped signal is the same as the original signal.
The effects of normalization is illustrated in Figure 6-3.
It plots the ratio of the cosine components of the
clamped signal to those in the original signal, cos160(α),
for various values ofn′, starting at 20 and going to 140
in step sizes of 20. We see that in the low frequencies
the original and clamped components are identical but as
we go higher up in the frequency spectrum the cosine
components in the clamped function quickly fall off.

0 50 100 150
Frequency

Ratio

0

0.2

0.4

0.6

0.8

1

20 140

Figure 3

The resulting specular anti-aliasing algorithm is summa-
rized in the code fragment below:

if(dot∆ →
N >= MinDot[n]) {

/* no aliasing */
n′= n;
Kspecular′= Kspecular;

} else {
∆α →

N= 2*ArcCosine(dot∆ →
N);

sampleFrequency=π /∆α →
N;

n′= MaxnAllowed[sampleFrequency];
Kspecular′= Kspecular*Maximum[n]/Maximum[n′];

}

Kspecular indicates the fraction of the light that the specu-
lar component contributes. The array MaxnAllowed[] is
required only if we are performing aggressive specular
anti-aliasing. Otherwise,n′ is assigned the value of sam-
pleFrequency.

Results

The above algorithms for detecting and eliminat-
ing specular aliasing were implemented in a z-buffer ren-
dering system. The z-buffer visible surface algorithm
was chosen because it would guarantee that any anti-
aliasing observed would have to come from the clamping
algorithm. Adding the clamping algorithm to the z-
buffer renderer was straightforward. The biggest imple-
mentation hurdle encountered was changing the tiler to
have it computedot∆ →

N. The three arrays, MinDot[],
Maximum[] and MaxnAllowed[], were pre-computed
for efficiency. Plate 2 shows four cylinders, each with
identical surface properties but different sizes and orien-
tations computed to a resolution of 256 by 256 pixels.
The large central cylinder and the one on the lower right

exhibit severe specular aliasing. The cylinder on the
upper left is also exhibiting specular aliasing even
though none is visible at present. For if it is moved
slightly, aliased highlights will appear on its surface.
This is also true of the cylinder in the upper right. Plate
3 shows the same scene rendered using the highlight
clamping algorithm. The highlight down the central and
lower right cylinders are now smooth with no jaggies
present. A highlight is faintly visible on the cylinder in
the upper left. Now, even if the cylinder is moved, no
highlight will flicker on and off. The cylinder on the
upper right has no highlight visible as it is too faint.
There is so much curvature in this cylinder that any visi-
ble highlight would cause aliasing due to the severe
undersampling. Plate 4 shows the same scene rendered
with more aggressive clamping (99.9 percent power).
The highlights are brighter and not as spread out and
aliasing is not noticeable. Plate 5 shows a scene with
two cones with the one on the right being highlight anti-
aliased. The cone shape is useful in that it illustrates a
continuous transition from low curvature to high. As can
be seen, the transition into the high curvature region is
smooth when anti-aliased.

Conclusion

We hav e introduced a simple analytic algorithm
that, given the change ofα within the pixel, detects
when specular aliasing is present and indicates a sam-
pling rate to overcome it. We hav e also introduced a
very fast and simple algorithm that removes specular
aliasing without increasing the sampling rate.

I would like to thank Xerox PARC, and especially
Frank Crow, for providing the facilities and support for
much of this research project. Also, thanks to NSERC
for their continuing support.

References

Blinn, 1978.
J.F. Blinn, ‘‘Simulation of Wrinkled Surfaces,’’Com-
puter Graphics, vol. 12(3), pp. 286-292, August 1978.

Bui T. Phong, 1975.
Bui T. Phong, ‘‘Illumination for Computer Generated
Pictures,’’ Comm. of the ACM, vol. 18(6), pp. 311-317,
June 1975.

Carpenter, 1984.
L. Carpenter, ‘‘The A-buffer, an Antialiased Hidden
Surface Method,’’Computer Graphics, vol. 18(3), pp.
103-108, July 1984.

Catmull, 1978.
E. Catmull, ‘‘A Hidden-Surface Algorithm with Anti-
Aliasing,’’ Computer Graphics, vol. 12(3), pp. 6-10,
August 1978.

Cook, 1986.
R.L. Cook, ‘‘Stochastic Sampling in Computer Graph-
ics,’’ Tr ans. on Graphics, vol. 5(1), pp. 51-72, January
1986.

Crow, 1977.
F.C. Crow, ‘‘The Aliasing Problem in Computer-
Generated Shaded Images,’’Comm. of the ACM, vol.
20(11), pp. 799-805, November 1977.

Crow, 1981.
F.C. Crow, ‘‘A Comparison of Antialiasing Tech-
niques,’’ IEEE Computer Graphics and Applications,
vol. 1(1), pp. 40-48, January 1981.

Crow, 1982.
F.C. Crow, ‘‘Computational Issues in Rendering Anti-
Aliased Detail,’’ IEEE 1982 Spring COMPCON, pp.
238-244, 1982.

Duff, 1989.
T. Duff, ‘‘Polygon scan conversion by exact convolu-
tion,’’ in Raster Imaging and Digital Typography,
Edited by J. Andre, R. Hirsh, Cambridge Univ. Press;
Proceedings of RIDT89 Intl. Conf., Lausanne, Switzer-
land, pp. 154-168, October 1989.

Hwei P. Hsu, 1970.
Hwei P. Hsu,Fourier Analysis,Simon and Schuster,
N.Y., 1970.

Norton, 1982.
A. Norton, A.P. Rockwood, and P.T. Skolmoski,
‘‘Clamping: A Method of Antialiasing Textured Sur-
faces by Bandwidth Limiting in Object Space,’’Com-
puter Graphics, vol. 16(3), pp. 1-8, July 1982.

Oberhettinger, 1973.
F. Oberhettinger,FOURIER EXPANSIONS: a collection
of formulas,Academic Press, N.Y., 1973.

Pratt, 1978.
W.K. Pratt, Digital Image Processing, Wiley-
Interscience, 1978.

Saito, 1989.
T. Saito, M. Shinya, and T. Takahashi, ‘‘Highlighting
Rounded Edges,’’CG International ’89, 1989.

Tanaka, 1990.
T. Tanaka and T. Takahashi, ‘‘Cross Scanline Algo-
rithm,’’ Eurographics ’90, pp. 63-74, 1990.

Williams, 1983.
L. Williams, ‘‘Pyramidal Parametrics,’’ Computer
Graphics, vol. 17(3), pp. 1-11, July 1983.

