Robot Map Verification of a Graph World

Xiaotie Deng
Department of Computer Science
City University of Hong Kong
Kowloon, Hong Kong SAR, China

deng@cs.cityu.edu.hk

Evangelos Milios, Andranik Mirzaian

Department of Computer Science, York University
Toronto, Ontario, Canada, M3J 1P3

{eem,andy }@cs.yorku.ca.

Abstract: In the map verification problem, a robot is given a (possibly incorrect)
map M of the world G with its position and orientation indicated on the map. The
task is to find out whether this map, for the given robot position and its orientation
in the map, is correct for the world G. We consider the world model of a graph
G = (Vg, Eg) in which, for each vertex, edges incident to the vertex are ordered
cyclically around that vertex. (This also holds for the map M = (V, Ey).) The
robot can traverse edges and enumerate edges incident on the current vertex, but
it cannot distinguish vertices (and edges) from each other. To solve the verification
problem, the robot uses a portable edge marker, that it can put down at an edge of
the graph world G and pick up later as needed. The robot can recognize the edge

marker when it encounters it in the world G. By reducing the verification problem

1

to an exploration problem, verification can be completed in O(|Vg| x |Eg|) edge
traversals (the mechanical cost) with the help of a single vertex marker which can
be dropped and picked up at vertices of the graph world [DJMW1, DSMW2]. In
this paper, we show a strategy that verifies a map in O(|Vy|) edge traversals only,
using a single edge marker, when M is a plane embedded graph, even though G' may

not be planar (e.g., G may contain overpasses, tunnels, etc.).

KEW WORDS: robot exploration and map verification, on-line algorithm, topo-

logical graph, face tracing.

1 Introduction

There are several different facets for robot navigation which are important in real
world environments. One crucial issue is how to deal with cumulative errors, which
may cause the robot to lose track of its position in the real world. Several different
approaches are suggested to relate the robot position with the external features of
the environment using a map [BCR, BRS, GMR, KB, LL, PY]. This leads to the task
of map construction (mapping), i.e., learning the cognitive map from observations,
as summarized by Kuipers and Levitt [KL]. Much research has been done on the
robot mapping problem for different external environments [AH, DJMW1, DM, DP,
DKP, Kw, PP, RS].

Naturally, one major class of maps used in robot navigation is geometric. How-
ever, it remains an important and difficult problem how to utilize the map and
match it with the enormous amount of observed geometric information for robot
decision makings. Alternatively, qualitative maps, such as topological graphs, are
proposed to model robot environments which usually require much less information
in comparison with geometric models [DJMW1, DM, DP, KB, LL, RS]. This ap-
proach often focuses on a small set of characteristic locations in the environment
and the routes between them to reduce information necessary for robot navigation.
Consequently, it simplifies the task of robot decision making. Kuipers and Levitt
have proposed a spatial hierarchical representation of environments consisting of
four levels: sensorimotor level (a robot uses sensors to detect local features of the
environment); procedural level where the robot applies its knowledge of the world
to find its place in the world and to follow specified routes; topological level which
describes places and their connecting paths, usually with the graph model; and met-
ric level which includes necessary geometric information related to the topological
representation [KL, also see KB, LL]. These approaches, neither purely metric nor
purely qualitative, leave certain features of the environment out but keep necessary

information helpful for robot motion planning.

The robot’s perception of the world can also be different as a result of the differ-
ent sensors it carries. In many situations, it is assumed that nodes or edges traversed
previously can all be distinguished. In contrast, it is assumed in [RS] that nodes are
divided into a small number of classes, for example, white and black colors, and can
only be recognized as such. Dudek et al. [DJMW1] apply the world model intro-
duced by Kuipers and Levitt to a specific situation in which no global orientation
information is possible. They divide the world into places represented by nodes in a
topological (i.e., embedded) graph and use an edge between two nodes to represent a
connecting path between the corresponding two places. The robot is assumed not be
able to distinguish nodes from each other but can recognize a special local geometric
feature: a cyclic order of incident edges at each node. This emulates the fact that,
at the crossroads, paths form a cyclic order because of the local planar geometric
nature of the surface. Dudek et al. [DJMW1] show that it is impossible to learn
the graph in general if the robot uses only information collected under the above
restriction. For instance, this happens when every node in the graph, representing
the world, has the same number of incident edges. On the other hand, they show
that in a total of O(|V/| x |E|) traversals of edges, the map can be constructed with
the help of a single marker which can be put down on nodes and picked up by the
robot. Deng and Mirzaian [DM] showed that using |V'| identical node-markers the
robot can construct a map of a plane embedded graph G by traversing each edge at
most a constant number of times (i.e., a total of O(]V]) edge traversals).

The world model introduced by Dudek, et al., will be adopted for our discussion
[DIMW1]. We consider the map verification problem: The robot is given a single
directed edge-marker and a plane embedded n-vertex map M and the initial position
and orientation of the robot in the map. The task is to verify the correctness of
the map in this setting. The environment graph G may or may not be planar (e.g.,
it may contain tunnels, overpasses, etc.). We demonstrate that the verification of
plane embedded graph maps can be done very efficiently with a single edge marker

by introducing a map verification strategy which traverses each edge at most 4

Figure 1: A cyclic order of edges incident to a node.

times.

2 The World Model

As discussed above, the world is an undirected connected graph G = (V, E') embed-
ded with no edge crossings on a (not necessarily planar) surface [DJMW1]. At each
node, the incident edges are embedded locally in the plane (Figure ??). The local
embedding forms a natural cyclic order for the edges incident to the node. When
we have specified an edge incident to the node as the reference edge for the node,
we can name other edges incident to this node with respect to the reference edge

according to this cyclic order (e.g., in clockwise order).

The Robot’s Map of the Graph World. In the graph world model, nodes
usually correspond to intersection of passage ways in the real world. To deal with
general situations where landmarks may look similar by the robot’s sensors, Dudek
et al. assume the worst possible situation: nodes in the graph are indistinguishable
to the robot. Therefore, the complete map of the graph is a triple (V, E,S), where
V and FE are the node set and the edge set of the graph, and § is the collection of
the local planar embeddings of edges incident to each node.

Note that in Figure 7?7, we intentionally give an example, where, for several
nodes, the cyclic orderings of incident edges are different from those in the topological
graph to emphasize the general situation where local orientations of edges at each

node can be arbitrary. In fact, given any graph G = (V| E)) and given any set S of

(a) The graph (b) Local embeddings of edges

Figure 2: A map.

cyclic orders of edges incident to a node, there is a surface on which the graph can
be embedded such that the local planar embedding of edges incident to each node
follows the cyclic order of S [HR]. Even in the real world, these may happen because
tunnels and overpasses can create generally embedded surfaces.

An alternative representation of the map is its cyclically ordered Adjacency List
Structure. That is, for each node v in the map we associate a cyclically ordered list
of the nodes adjacent to v. The cyclical ordering is the clockwise ordering of the
corresponding incident edges around node v.

In Figure 7?7, we give several maps of K, to illustrate different graph world maps
that can be generated from K. Notice that (a) is embedded in a planar surface and
the others must be embedded in surfaces of higher genus. with careful examination
of the maps, one can see that (b) and (d) correspond to the same combinatorially

embedded map.

Robot Navigation with a Correct Map. Once the correctness of the map is
guaranteed, the current location of the robot is matched to a node uy on the map,
and a path from the robot location is matched to an edge ey incident to uy on the
map, the robot can match all the paths at its current location to edges on the map
incident to wug. If the robot moves to another location through one of the paths, it

knows which map node matches the next location it reaches. The edge that leads

N
>

(@ (b)

"
() (d)

Figure 3: Some combinatorial embeddings of Kj.

the robot to the next location becomes its reference edge at the new location. From
the local embedding of edges incident to the new node, with the help of the reference
edge, it can again match edges incident to this new node with paths from its new
location. This allows the robot to use the map in navigating from one location to

another until it reaches its destination.

The Map Verification Problem. The robot is initially positioned at a certain
node of an unknown embedded graph environment G and oriented along one of its
incident edges. It is also given an embedded map M (say, in the form of the cyclically
ordered adjacency list structure). We let the augmented map M to mean the map M
plus the initial position and orientation of the robot on the map. Let the augmented
G be defined similarly. The map verification problem is: for an augmented pair
(M, G), verify whether M is a correct augmented map of the augmented environment
G by navigating in the environment and comparing the local observations with the

given map.

3 The Plane Map Verification Algorithm

A notion of face tracing from topological graph theory [GT] is crucial in our ver-
ification algorithm. The general idea in our algorithm is to trace the faces of the
augmented map M one by one, mimic the same actions on the environment graph,
and compare the local observations with the map. For the world model as discussed
above, the local observations are the degree of the node visited, and the presence
or absence of a marker at the current node or edge. The intricacy of this approach
is reflected by the fact that the sequence of these local observations for any proper
subset of faces is not at all enough even for a partial map but the complete sequence
uniquely verifies the map.

In Algorithm 1, a single edge-marker is used. When we refer to the map M,
we will use phrases such as to put down or to pick up the edge-marker or to move
along an edge. The actual action is carried out on the graph environment G, but a

corresponding symbolic operation is performed on M.

Remark 1: Instead of considering an embedding on the plane, it is preferable to
think of the embedding on the sphere. In this way, there is no distinguished “outer”
face. O

ALGORITHM 1: We have an augmented pair (M, G) and a directed edge-marker.
M is a given planar embedded map represented, say, by its cyclically ordered adja-
cency list structure, and G is the yet unknown augmented environment graph.

The cases when M has a single node or edge can be handled and proved trivially.
Now consider the general case.

Assume that the robot is initially positioned at node n, of M and oriented along
edge e, = (ny,n;). Place an edge-marker on edge e, in the direction of robot’s
orientation. In general, suppose the robot is currently at node n; and is oriented
along edge e; = (n;,n;11). Record the degree of node n; and let us denote that by
d;. The robot moves to node n;,1. Now let e;,1 = (n;11, ni12) be the edge clockwise

next to edge e; at node n;;,. Increment ¢ by one and repeat the same process. The

robot stops before iteration, say, [, when the directed edge e; = (n;, nyy1) it is about
to traverse contains the edge-marker in the direction of the traversal.

At that point, the robot picks up the marker. That is, the marker on the edge
e = (u,v) is directed from u to v and it is picked up when we are about to move
from u to v again and realize this by noticing that the marker is along this direction.
The robot has completed tracing a face, say, f of M. Let D(f) = (do,dy,---,d;)
denote the node degree sequence the robot observed during the tracing of face f. In
our map verification algorithm we will use D(f) as the signature for face f. Note
that the signature of a single face by itself does not uniquely identify the topological
structure of the face. We will show, however, that the collection of all signatures
together will.

The robot then backtracks along the most recent edges traversed (during forward
tracing of faces) until it reaches the first edge, say, e of M that it has traversed only
once. (Note that during the backtracking, we consult the map M, not G, to figure
out the edge e.) The robot then uses this edge e as the starting edge of the next face
to trace. It places the edge-marker on that edge in the direction not yet traversed
(according to the map M) and follows the same face tracing procedure described
above.

To help the backtracking process, the robot can stack up all its forward move-
ments by pushing an appropriate id of the edge of M just traversed onto a stack
of edges traversed only once. Then, during the backtracking, it pops the top id
from the stack and performs the reverse move. During the backtracking no id’s are
pushed onto the stack and we do not need to check node degrees.

If during the backtracking the stack becomes empty, the robot terminates its
traversal: all faces of M have been traced, and we have the signatures of each face
in the order they have been traced.

To complete the description of our map verification algorithm we should add
that the robot mimics the same edge tracing actions on the embedded environment

graph G as it performed on the map M (eg, taking the next edge clockwise). If

10

ever during the process it notices a mismatch of local observations between M and
G, it immediately halts and declares the augmented map is incorrect. The local
observations that the robot matches are during the forward movements (tracing
faces) and that is observing and matching the degree of the current node and the
presence or absence of the edge-marker on the current edge and its direction on that
edge.

If a mismatch occurs, it is obvious that the augmented map is incorrect. The
crux of the matter is to prove that if no mismatch occurs, then indeed the augmented

map is correct, and hence the algorithm always gives the correct answer. []
The verification algorithm We now summarize the algorithm described above
with the following notes.

s M is the map and G is the graph-like world.

» All robot actions take place "mentally” on M and physically on G.

= Node degrees are measured in G, and counted on M at the same time. A

clockwise order is assumed available at each node of G and M.

= As the robot moves, it checks whether its perception in G agrees with its

expectation based on M. If a discrepancy occurs, then verification fails.

= Discrepancy of type 1: node degree observed on G not the same as expected

based on M.

» Discrepancy of type 2: edge-marker not found where expected (or found where

not expected) based on M.

» For each edge e of M, trace(e) indicates how many times has edge e been

traversed in either direction during the forward face tracing traversals.

Main algorithm:

11

Set ES (edge stack) to empty.
For each (undirected) edge e in M, set trace(e) < 0.
Select edge eq = (ng, nq) out of initial node ny.
Place edge-marker on ¢ in the direction ng — n;.
ForwardTraverseFace F of M defined by the directed edge-marker.
Loop until ES is empty.
Pop ES to obtain edge e = (n;,n;41).
if trace(e) = 2 then Backtrack along edge e.
else /* trace(e) =1 */
Place the edge marker on e in the direction not yet traversed n;,; — n;.
ForwardTraverseFace defined by the directed edge-marker.
end Loop

Procedure:
ForwardTraverseFace defined by edge e = (n;,n;;1) and direction dir = (n; — n;41)
Repeat
Verify degree of current node of M against G (type 1).
Traverse edge e in the direction dir.
Push e, in the direction of traversal, on ES.
set trace(e) « trace(e) + 1.
Select the next edge e; out of the current node.
(clockwise wrt to the previous edge traversed).
set e <= e; and update dir accordingly.
Verify whether presence/absence of edge-marker on e agrees on
M and G (type 2).
until edge-marker is detected on e.
pick up the edge-marker.

end ForwardTraverseFace

12

Examples To appreciate some of the subtleties of this seemingly simple algorithm,

we present several illustrative examples.

Example 1: In this example we consider only the actions taken by Algorithm
1 regarding the map. Figure 7?7 shows a map M with 3 faces, indicated by f;
through f3 in the order they are traced by the algorithm. The edge indicated by
a directed arrow and labeled m; is the position and orientation of the marker at
the starting edge of face f;. The remaining forward moves are shown by dotted
arrows. However, the backtracking traversals are not shown on the figure. The
robot tracing face f; visits edges (ab, be, cd, de, ec, ¢b, ba, ag, gh, hi, ig, ga), with the
signature D(f,) = (2,2,3,2,2,3,2,2,3,2,2,3,2). Then it picks up the marker and
backtracks along edge ag. Positions the marker along edge gi and starts tracing the
second face fy = (gi,ih, hg) with signature D(f2) = (3,2, 2,3). Picks up the marker
and backtracks along edges (gh, hi,ig, gi,ih, hg, ga,ab,bc) and places the marker
along edge ce. It then starts tracing the third face f3 = (ce, ed, dc) with signature
(3,2,2,3). It then backtracks along edges (cd, de, ec, ce, ed, de, cb, ba). At this point
the stack is empty. The process is complete. [

Figure 4: Tracing faces of M by the algorithm.

Example 2: In this example M is an incorrect augmented map of G' as shown in
Figure 7?7. The arrows indicate the starting edge of each face. Algorithm 1 does not
notice the difference between M and G until the fourth face of the map is traversed.

O

13

Figure 5: An incorrect map.

Example 3: We can simulate the effect of an edge-marker by two distinct node-
markers, placing them at the two ends of the edge, or three homogeneous node-
markers by placing one at one end and two at the other end. However, in this
example we show that using a single node-marker which is placed at the starting
node of each face does not work correctly. In Figure 7?7 we see a situation where
we have an incorrect map, but the robot will not detect the error. The arrows
indicate starting edges of each face. The node-marker is placed at the start of the
corresponding starting edge. While tracing face f; of M, the robot will double-trace
the “outer” face of G. Also, while tracing faces f; and f3 of M, the robot will trace
the same portion of the “inner” face of GG. It will never visit the two leaf nodes in G
and their incident edges. The robot will observe the same signatures (and presence
or absence of the node-marker) as it traces the faces of M and copies the same

actions on G. [

f1/> fl/

M G

Figure 6: A single node-marker is not enough.

14

Example 4: Algorithm 1 does not work when the map is not embedded in the
plane. For instance, consider the example in Figure ??7. The augmented Map M
has the single face with signature 2,2,3,3,3,2,2,3,3,3,2. The corresponding face
of G has the same signature. Map M in this example can be embedded on a torus,
and has combinatorially embedded genus 1. Algorithm 1 will fail to observe any

mismatch.

Figure 7: A non-plane map.

4 Proof of Correctness of Algorithm 1 for Plane
Maps

We will show Algorithm 1 of the previous section works correctly when the given map
M is embedded in the plane (even though the environment graph G may not be).
We will also show that the total number of edges traversed by the robot during the
algorithm (forward and backtracking included) is at most 4 times the total number

of edges of the map.

Theorem 1 Algorithm 1 of the previous section correctly verifies any augmented
plane embedded map using a single directed edge-marker. Furthermore, the total
number of edges traversed by the robot is at most 4 times the number of edges in the

map.

Proof: Suppose M is an n—node augmented map and G is the augmented envi-

ronment graph. It is not hard to see that each edge of the map will be traversed at

15

most 4 times: Each edge is forwardly traversed twice, and with each such move the
robot pushes an id of the edge onto the stack. Each edge backtracked corresponds
to popping a previously pushed id from the stack.

Now let us consider the correctness of the algorithm. If the algorithm finds
a mismatch, then clearly the returned answer that A is not a valid augmented
map is correct. Now suppose the algorithm returns the answer that M is a correct
augmented map. We will prove the correctness of the answer by induction on the

number of faces of M.

Basis: In this case M has only one face and since it is embedded in the plane, it
must be a tree. However, G may be any embedded graph. Suppose to the contrary
that M is not a correct augmented map of GG, but the algorithm makes the incorrect
conclusion. Consider the smallest counter-example, that is, one in which M has
fewest possible number of nodes. We will reach a contradiction by showing that
there is even a smaller counter-example. From the description of the algorithm,
M is not a single node or edge. Since each edge of M is a bridge (i.e., an edge
whose removal will disconnect the graph), each edge of M will be traversed twice
(in opposite directions) during the tracing of the single face of M. In other words,
the length of the face of M, that is the number of edges incident to the face, is
2n — 2. While tracing the face of M, suppose the robot is tracing a face f of G.
Since it will check the presence or absence of the edge-marker along edges, it will
make exactly one complete round around face f of G. Hence, length of f is also
2n — 2.

Since M is a tree, it must contain a leaf node other than the two ends of the
starting edge. Let x be the first such leaf of M that the robot reaches during the
tracing of the face of M. When it reaches node x of M, suppose the robot is at
node y of G. Since the degrees match, y must be a leaf of GG, and the unique nodes
adjacent to x in M and to y in G must also have equal degrees. As the robot
continues the tracing of the face of M, it will encounter the leaf node x only once.

Similarly, since it traces face f of G' exactly one round, it will encounter leaf node

16

y of G only once. Now consider the smaller counter-example pair (M’, G) in which
G' is the same as G with leaf node y and its incident edge removed, and M’ is M
with leaf node x and its incident edge removed. Furthermore, consider the same
initial position-orientation of the robot. When the algorithm is applied to (M', G")
it will observe the same signature and hence return the incorrect answer that M’ is

a correct augmented map of G'. This contradicts the minimality of M.

Induction: In this case M has at least two faces. Suppose f; and f; are respectively
the first and second faces of M traced by the algorithm. Suppose e; = (v;, u;),
i = 1,2, is the starting directed edge of face f;. Let f;, & = (0;,1;), 1 = 1,2, be the
corresponding objects of G. Because of the use of the edge-marker, length of f; is
the same as length of fi, t = 1,2, and they have a matching signature. Because of
the backtracking process, edge e, is the first edge, in opposite direction, incident to
face f, that was traversed only once during the tracing of f;. Hence, faces f; and
f2 are incident to edge e;. Thus, ey is not a bridge of M. Therefore, faces f; and f,
of M are distinct and share edge es.

As it makes the backtracking in M, the robot makes the same number of back-
tracking moves to trace back from edge é; to edge é;. Now we show that é; cannot
be a bridge of G. At the start of tracing of the second face, the edge-marker is
placed at the starting edges ey, and é; of faces f, and fo of M and G, respectively.
Since ey is not a bridge of M, the edge-marker on e, will be seen only once at the
start and once at the end of the tracing of f;. Therefore, the same must hold in G,
that is, the edge-marker on é, will be seen only once at the start and once at the
end of the tracing of face fg. We conclude that é; cannot be a bridge of G either.
If it were, then the edge-marker would have been seen once more, in the reverse
direction, in the middle of the tracing of fg. Therefore, faces fl and f2 are distinct
and share the edge é;.

Figure ?7(a) shows the situation in M. Now we will perform a local surgery
on M to construct a map M’ with one fewer face than M. Simply remove edge

ey from M. This will reduce the degrees of nodes vy and uy, by 1. The surgery is

17

(b)

Figure 8: (a) Before the surgery, (b) after the surgery.

depicted in Figure ??(b). This surgery effectively merges the two faces f; and f,
into a new face denoted by f;,. Similarly, let G’ be obtained from G be removing
edge é5. This merges the two faces fl and f2 into a new face fl,g. Now consider
the instance (M',G’) with the same initial position-orientation of the robot as in
the instance (M, G). (In case ey is the same as ej, in reverse, in M, take the initial
edge in the modified map to be the one next to e; on f;. Apply the same idea on
G.) Since f; and ﬁ had the same length and the same signature, for ¢ = 1,2, the
new faces fio and f172 also have the same length and signature. Furthermore, the
remaining faces, if any, traced by the robot will be exactly as before the surgery
(except that end nodes of e; and é; have reduced degrees). Thus, if the instance
(M',G") was the input, the robot would still answer that M’ is a correct augmented
map of G'. Since M' has one fewer face than M, by the induction hypothesis, M’ is
indeed a correct map of G'. Furthermore, since before the surgery we had matching
signatures and matching backtracking length, in (M', G") the pair of node vy and uy
will respectively match the pair of nodes 95 and 5. Therefore, M is a correct map

of G. This completes the proof. [.

18

5 Implementation

We have an animated simulation program for our verification algorithm for the
case of plane embedded maps. The program is written in C embedded in an
OpenGL/GLUT program to produce the graphics. The program runs on a Sun
Ultra 2 running Solaris version 2.5.1.

The input to the program is a list of the vertices in the map and graph and for
each vertex, a list of the edges eminating from that vertex specified in clockwise
order. The data is held in an augmented adjacency list structure. The program was
tested successfully on a variety of simple map/graph pairs. The animation shows
the progress of the (simulated) robot on the graph and its corresponding state and

position on the map. A snapshot of the animation is shown in Figure ?77.

6 Remarks and Discussion

In the paper we presented an efficient algorithm for planar map verification by a
robot in a graph world, with the aid of one edge marker. We assumed that the robot
is told its initial position on the map. If the robot is not told this information, then
the problem is one of self-location [DJMW?2]: the robot is required to locate itself on
the map, while verifying the map at the same time. It is an open question whether
this self-location problem in a planar graph-like world can be solved in O(|E|) edge
traversals by a robot with a single edge marker. Another open question is whether
a map with combinatorial-genus ¢g can be verified in O(]E|) edge traversals using

only O(g) markers.

Acknowledgement Authors’ research was partly supported by NSERC grants.
Xiaotie Deng would also like to acknowledge the financial support by a CERG grant
from the Research Grants Council of Hong Kong Special Administration Region,
China (Project No. CityU 1074/00E). The authors would like to thank Arlene

Ripsman for producing the animated simulation program.

19

Figure 9: The animation snapshot.

References

[AH | S. Albers and M.R. Henzinger, “Exploring Unknown Environments”, Proc.
of the 29th Annual ACM Symposium on Theory of Computing (STOC97),
pp. 416-425.

[AHU | A.V. Aho, J.E. Hopcroft, J.D. Ullman, “The Design and Analysis of Com-
puter Algorithms,” Addison-Wesley Pub. Comp., 1976.

[BCR] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins, “Searching in the
Plane,” Information and Computation. 106, 1993, pp.234-252.

20

[BRS] A. Blum, P. Raghavan and B. Schieber, “Navigating in Unfamiliar Geometric
Terrain,” Proc. of the 23rd Annual ACM Symposium on Theory of Computing
(STOC91), pp. 494-504.

[IDJMW1 | G.Dudek, M, Jenkin, E. Milios, D. Wilkes, “Robotic Exploration as Graph
Construction,” IEEE Trans. on Robotics and Automation, Vol.7, 1991,pp.859-
865.

[IDJIMW2 | Dudek, G., Jenkin, M., Milios, E., and Wilkes, D., “Map Validation and
Self-location for a Robot with a Graph-like Map”, Robotics and Autonomous
Systems, Vol. 22(2), November 1997, pp. 159-178.

[DKP | X. Deng, T. Kameda and C. H. Papadimitriou, “How to Learn an Unknown
Environment,” Journal of the ACM, 45(2), 1998, pp. 215-245.

[DM | X. Deng, A. Mirzaian, “Competitive Robot Mapping with Homogeneous
Markers,” IEEE Trans. on Robotics and Automation 12(4), pp. 532-542,
August 1996.

[DP | X. Deng, and C. H. Papadimitriou, “Exploring an Unknown Graph,” Proc.
of the 31st Annual IEEE Symposium on Foundations of Computer Science
(FOCS’90), pp.355-361.

[Ed] J. Edmonds, “A combinatorial representation for polyhedral surfaces,” Not.

Am. Math. Soc. 7, page 646, 1960.

[GMR] L.J. Guibas and R. Motwani and P. Raghavan, “The robot localization prob-
lem,” SIAM Journal on Computing 26(4):1120-1138, 1997.

[GT] J.L. Gross, and T.W. Tucker, “Topological Graph Theory,” John Wiley and
Sons, New York, 1987.

[HR] N. Hartsfield, G. Ringel, “Pearls in Graph Theory”, Academic Press, 1990.

21

[KB | B. Kuipers, and Y. Byun, “A Robot Exploration and Mapping Strategy
Based on a Semantic Hierarchy of Spatial Representatinos,” Robotics and

Autonomous Systems 8 (1991) 47-63.

KL | B. Kuipers, and T. Levitt, “Navigation and mapping in large-scale space,”
AI Mag., Summer 1988, pp.61-74.

[Kw | S. Kwek, “On a Simple Depth-first Search Strategy for Exploring Unknown
Graphs”, Proc. of the 6th International Workshop on Algorithms and Data
Structures (WADS’97), Halifax, Nova Scotia, Canada, August 6-8, pp. 345-
353. Proc. of the 23rd Annual ACM Symposium on Theory of Computing
(STOC’91), pp. 278-288.

[LL | T.S. Levitt, and D. T. Lawton, “Qualitative Navigation for Mobile Robots,”
Artificial Intelligence 44 (1990), 305-360.

[PP | Petrisor Panaite and Andrzej Pele, “ Exploring Unknown Undirected Graphs”,
Proc. of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’98), pp. 316-322.

[PY | C. Papadimitriou and M. Yannakakis, “Shortest paths without a map,” The-
oretical Comp. Science 84, 1991, pp.127-150.

[RS] R. L. Rivest and R. E. Schapire, “Inference of Finite Automata Using Homing

Sequences,” Information and Computation 103, 1993, pp.299-347.

22

