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Abstract

The use of design patterns in a software system can pro-
vide strong indications about the rationale behind the sys-
tem’s design. As a result, automating the detection of design
pattern instances could be of significant help to the process
of reverse engineering large software systems.

In this paper, we introduce DPVK (Design Pattern Ver-
ification toolKit), the first reverse engineering tool to de-
tect pattern instances in Eiffel systems. DPVK is able to
detect several different design patterns by examining both
the static structure and the dynamic behaviour of a system
written in Eiffel. We present three case studies that were
performed to assess DPVK’s effectiveness.

1 Introduction

Design patterns have attracted significant attention in
software engineering in the last decade. An important rea-
son behind this trend is that design patterns are potentially
useful in both development of new, and comprehension of
existing object-oriented designs, especially for large legacy
systems without sufficient documentation.

The design patterns introduced by Gamma et al.[3] cap-
ture solutions that have developed and evolved over time.
Each design pattern indicates a high level abstraction, en-
compasses expert design knowledge, and represents a solu-
tion to a common design problem. A pattern can be reused
as a building block for better software construction and de-
signer communication.

Design patterns are not only beneficial to the forward en-
gineering process. From a design recovery perspective, pat-
terns can provide information about the organization of a
system and the role of each component. Moreover, patterns
can also indicate the design rationale behind the system’s
implementation. Since design patterns have well-defined
contexts in which they are applied, as well as well-defined
consequences, finding instances of design patterns in a sys-
tem can potentially yield the motivation for the system’s
design. As a result, several approaches to design pattern
detection have been presented in the literature (surveyed in
Section 2).

A typical system structure for pattern detection tools in-

cludes three parts: a parser, a detector, and a database. The
parser extracts facts from the implementation. Then, the de-
tector retrieves pattern definitions from the database, com-
pares these definitions with the facts, and outputs the detec-
tion result. The database can also be used to store detected
pattern instances for further analysis.

One of the core issues in design pattern detection is pat-
tern definition. It must accurately reflect the traits of each
pattern, as well as differentiate it from other patterns. If
we treat such a definition as a set of conditions, then the
set must contain all necessary conditions without any un-
necessary ones. The strictness of definition is a prerequisite
for detection tools to find correct pattern instances without
missing any. The more redundancy in a pattern’s definition,
the more false positives will be reported.

This brings us to the second challenge that design pat-
tern detection techniques face: eliminating false positives.
Many recently developed tools use multiple passes [11], or
recursive filtering [5], to improve the detection output. In
the meantime, it is becoming clear that both static struc-
ture and dynamic behaviour need to be taken into account
in order to increase the precision and recall of existing tech-
niques.

In this paper, we present the first design pattern detection
tool for systems written in Eiffel. Eiffel is a pure object-
oriented language with many distinct features that require
a different approach to pattern detection, such as generic-
ity and executable contracts. Our approach includes rigid
pattern definitions based on REQL [12] for static structure
(inheritance and client-supplier relationships), and “ordered
RSF” for dynamic behaviour (message passing). The results
of three case studies indicate that such a minimal approach
can be quite effective in detecting design patterns and elim-
inating a large number of false positives.

The remainder of this paper is organized as follows: Sec-
tion 2 presents related work on design pattern detection.
The DVPK tool is introduced in Section 3 together with
our approach for defining design patterns. The results of
applying DVPK in three different case studies are presented
in Section 4. Finally, Section 5 concludes our work and
presents opportunities for further research.



2 Background

Although research on design pattern detection is still at
an early stage, there are several interesting contributions
in the literature. Design pattern detection tools and tech-
niques can be catalogued in various ways, depending on
the supported language, analysis approach, and effective-
ness/efficiency. In the following, we discuss several design
pattern detection tools in chronological order.

Pat[8]: The Pat system is a design recovery tool for C++ ap-
plications. It extracts design information directly from C++
header files and stores it in a repository. Patterns are defined
as PROLOG rules and the design information is translated
into facts. The Pat system can only be used to detect struc-
tural design patterns. Both patterns and examined designs
are represented in PROLOG format. The actual matching
work is done by a PROLOG engine. In contrast to other
reverse engineering tools, Pat does not intend to do very
detailed program understanding or design recovery. Its lim-
itation is that it has difficulty in dealing with behavioural
patterns, since too much semantic information is required.

KT[2]: KT is a tool that can reverse-engineer design di-
agrams from Smalltalk code and use this information to
detect patterns. The author of KT advocates that any tool
designed to detect design patterns must support both static
and dynamic modelling constructs. In terms of diagrams,
static information includes is-a and has-a relationships and
dynamic information includes object interaction or message
flow. Three GoF design patterns are analyzed: Composite,
Decorator and Chain of Responsibility. The methods used
for the detection of these patterns are coded directly into the
KT source code.

Seemann-Gudenberg[10]: The authors present some ideas
on how to recover design information from Java source
code. The pattern recognition approach proceeds in three
steps that reveal different layers of abstraction. First, a com-
piler collects information about inheritance, method call
and particular naming conventions and generates a graph as
its output. Next, this graph is transformed by graph gram-
mar productions. The transformation is done at different
levels, from method call to class association and delega-
tion. Finally, pattern detection is conducted by predefined
criteria. Although there is only one pass through the source
code, each subsequent transformation phase relies on the
result of the previous phase.

SPOOL[7]: The SPOOL (Spreading Desirable Properties
into the Design of Object-Oriented, Large-Scale Software
Systems) project is a joint industry/university collabora-
tion between the software quality assessment team of Bell
Canada and the GELO (GEnie LOgiciel = software engi-
neering) group at the University of Montreal. This project

aims at both software comprehension and software design
quality assessment.

As a part of the project, the SPOOL environment for de-
sign pattern engineering supports both forward and reverse
engineering of design patterns. This environment comprises
functionality for design composition, change impact analy-
sis, and most importantly, support for the recovery of de-
sign patterns. Using this environment, human analyzers can
zoom into design components that resemble patterns, ex-
tract them as diagrams, compare them with pattern descrip-
tions, or, in the case of a false positive, dismiss the finding
of the identified pattern instance.

JBOORET[9]: JBOORET (Jade Bird Object-Oriented Re-
verse Engineering Tool) adopts a parser-based approach to
extract the higher-level design information and conceptual
model from system artifacts. The JBOORET for C++ con-
sists of three major components: a data extractor, a knowl-
edge manager and an information presenter. Separating data
extraction from information representation, this architec-
ture avoids repeating analysis process for each higher-level
model extraction. As the front-end, the data extractor is the
only part that processes language dependent data. This de-
sign enables JBOORET to be easily adapted into reverse
engineering a system written in a language other than C++.
The knowledge manager contains conceptual models of the
developing language. The information presenter component
organizes and generates design information according to the
user’s preference.

Heuzeroth-Holl-Hogstrom-Lowe[4]: The authors present
a way to automatically detect patterns by combining both
static and dynamic analysis. The former restricts the code
construction and the latter the runtime behaviour. This anal-
ysis does not depend on coding or naming conventions. A
pattern instance is defined by a tuple of program elements
such as classes, methods or attributes. These elements must
conform to the rules of a certain design pattern.

First, source code is processed by static analysis which
transforms the implementation into tuples of AST(Abstract
Syntax Tree) nodes. Then, static analysis computes prede-
fined pattern relationships on the AST nodes and generates
the candidate set of pattern instances. The dynamic analysis
takes this set as its input. It monitors the execution of the
nodes of every tuple. It also tracks the output of the exe-
cuted nodes to check whether the candidate complies with
dynamic pattern rules. The candidate is eliminated if the
rule is violated. Finally, the remaining candidate set con-
tains the detected pattern instances.

The authors argue that neither static nor dynamic analy-
sis by themselves provide an adequate approach to finding
patterns in software systems. The number of false positives
is tremendously reduced by checking run-time interaction
within patterns. So far, the tool can detect Observer, Com-
posite, Mediator, Chain of Responsibility and Visitor pat-
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Figure 1. The structure of our design pattern detection approach

tern instances. According to [4], when the tool is applied
on Java SwingSet Example and the tool itself, the number
of false positives is small, in most experiments even zero.

In the next section, we present a tool called DPVK that
detects design pattern instances in systems written in Eif-
fel by matching the system’s static structure and dynamic
behaviour to that of the design pattern.

3 DPVK: Design Pattern Verification toolKit

A key aspect of detecting design patterns is how to model
and define a design pattern precisely and how to express that
definition. In our approach, each design pattern has two
definitions: one definition is based on the static structure of
the pattern and the other is based on its dynamic behaviour.
DPVK uses these two definitions to identify instances of
design patterns, as well as to differentiate between different
design patterns.

More specifically, DPVK compares these two definitions
with the static and dynamic fact files of the target software
system respectively. In theory, if both static and dynamic
definitions are complete and precise, all instances of design
patterns will be found and no false positives will be output.
If we treat each definition as a set of conditions, then com-
plete and precise definition means that no redundant condi-
tions are included and no necessary conditions are missing.

In the real world, a particular design pattern may be im-
plemented as a number of different variants in a given sys-
tem. Although each variant can still be illustrated and ana-
lyzed statically and dynamically in a similar way, to collect
all possible variants of each design pattern would be a time-

consuming, and possibly never-ending task. Our solution is
to create a design pattern definition repository which stores
as many variant definitions as possible. It is clear that, the
more complete this repository is, the better the chances we
will detect design patterns and their variants in software sys-
tems.

As shown in Figure 1, our approach includes four stages:
static fact extraction, candidate instance discovery, false
positive elimination, and manual evaluation. The first three
stages directly correspond to modules in DPVK’s imple-
mentation. All four stages are presented in detail in the
following subsections.

To help describe the process that DPVK uses in order to
detect design patterns, we will present the detection of the
Command pattern as a running example. The target soft-
ware system will be the implementation of the Command
pattern presented in [6]. We will refer to this implementa-
tion as the sample implementation.

The Command pattern wraps one or more methods in an
object which can be passed to other methods or objects as a
parameter and tell them to perform this particular operation
in the process of fulfilling the request. Command is an en-
tity that carries behaviour, rather than data. Figure 2 is the
UML diagram published in [3]. Table 1 presents the map-
ping between the classes in Figure 2 and the classes in the
sample implementation.

3.1 Stage 1: Static fact extraction

To simplify user-system interaction, DPVK only re-
quires two inputs for its first stage.
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Figure 2. Diagram of the Command pattern in GoF

Class name in GoF | Class name in the implementation
Client MAIN
Invoker BUTTON
Command COMMAND
ConcreteCommand QUIT_COMMAND
ConcreteCommand SAVE_COMMAND
Receiver EDITOR

Table 1. Class list of Command pattern

The first input is description files for all classes in the
target system. These files are created by running ec (Eiffel
Compiler) with appropriate options. ec is a command-line
Eiffel compiler developed by Eiffel Software [1].

The second input of DPVK is an ACE (Assembly of
Classes in Eiffel) file. The ACE file contains important in-
formation about an Eiffel project, such as the location of all
Eiffel source files and the root class name. This information
is required to extract all static facts from the target imple-
mentation. Figure 3 presents the relevant part of the ACE
file for the sample implementation.

From the sample implementation ACE file, DPVK ex-
tracts the following information about this implementation:
the root class name is MAIN, and the directory of the source
code is “/behavior/command. It is important to note
that the trace option is set to yes. This setting will generate
dynamic facts about this implementation when the system
is run. These facts will be used in the stage of false positive
elimination explained later.

DPVK looks in the directory specified above and finds
out the names of all classes by scanning all .e files
(Eiffel source code files). After that, DPVK parses
the class description files generated by ec and out-
puts the static information of all classes. The static
information is expressed in RSF format as a triple
relationship entityl entity2 to interface with
REQL in stage 2. Figure 4 gives the final output of this

root
MAIN: "make"

default
trace (yes)

cluster
root_cluster: "7 /behavior/command"

end

Figure 3. The ACE file for the sample imple-
mentation (Partial contents)

stage. Note that DPVK utilizes only inheritance and client-
supplier relationships (inherits and uses respectively).

3.2 Stage 2: Candidate instance discovery

This stage requires the definition of the static structure of
each design pattern we would like to detect. This definition
is rendered as an REQL script and it defines the inheritance
and client-supplier relationships among classes participat-
ing in the design pattern. Using REQL, we compare the
definition with the facts about static relationships derived in
stage 1. Figure 5 gives the static definition of the Command
pattern.

Lines 1 to 5 are commented out, since this part is only
useful to DPVK and REQL will bypass it. The first line
gives the number of participants in the pattern. For the
Command pattern, the number is four. The full names of all
participants as well as short names to be used in this script
are given in lines 2 to 5. The short names can be arbitrarily
chosen. However, the full names must be the same as the
names used in the dynamic definition (discussed in the next



inherits BUTTON WIDGET

uses BUTTON COMMAND

inherits MACRO_COMMAND COMMAND
inherits MACRO_COMMAND COMPOSITE
MACRO_COMMAND COMMAND
MAIN BUTTON

MAIN MACRO_COMMAND

MAIN QUIT_COMMAND

MAIN SAVE_COMMAND

uses MAIN EDITOR

inherits QUIT_COMMAND COMMAND
uses QUIT_COMMAND EDITOR
inherits SAVE_COMMAND COMMAND
uses SAVE_COMMAND EDITOR

uses
uses
uses
uses
uses

Figure 4. Static facts of the sample implemen-
tation

//#roles=4

//ivk—->invoker

/ /cmd—->command

//conCmd->concreteCommand

//re—->receiver

getdb ($1)

DP[ivk,cmd, conCmd, re]=
{uses[ivk, cmd];
inherits[conCmd, cmd];
uses|[conCmd, re] }

putdb ($2, {"DP"})

Figure 5. The static definition of the Com-
mand pattern in REQL script

stage). Line 6 tells REQL to retrieve the factbase from the
input file. Lines 7 to 10 are an REQL query that matches all
sets of four classes that are connected in the same manner as
the Command patterm structure. Line 11 defines the output
file.

Once a set of classes that fits the static definition is found,
we record it as a candidate instance. Eventually, the out-
put lists all combinations of classes that fit the design pat-
tern static structure. The output may contain false positives,
since the static structure of many design patterns contains a
small number of nodes and edges in a combination that is
likely to be found in software systems that do not contain
the particular design pattern.

Figure 6 presents the output of this stage. Line 1 in-
dicates that four participants are involved in the Com-
mand pattern. Line 2 lists the names of these partici-

S

roles number=4

Invoker Command ConcreteCommand Receiver
BUTTON COMMAND MACRO_COMMAND COMMAND

BUTTON COMMAND QUIT_COMMAND EDITOR

BUTTON COMMAND SAVE_COMMAND EDITOR
MACRO_COMMAND COMMAND MACRO_COMMAND COMMAND
MACRO_COMMAND COMMAND QUIT_COMMAND EDITOR
MACRO_COMMAND COMMAND SAVE_COMMAND EDITOR

Figure 6. Result of stage 2

roles#=3

1->Invoker

2->ConcreteCommand

3->Receiver

rules#=2

1->Invoker calls ConcreteCommand
2->ConcreteCommand calls Receiver

Figure 7. Dynamic definition of the Command
pattern

pants: Invoker, Command, ConcreteCommand and
Receiver. Lines 3 to 8 give six pattern instances found
by DPVK in this stage. The participants in each line are
listed in the order defined in line 2.

3.3 Stage 3: False positive elimination

This step deals with the elimination of false positives in
the output of the previous stage. For a large system, this
step is quite important, since the number of false positives
removed in this stage may be large.

This stage requires the dynamic definition of the design
pattern being detected. The dynamic definition is based on
the sequence of messages between classes expected dur-
ing execution. Figure 7 gives the dynamic definition of the
Command pattern.

The first line indicates that three participants are in-
volved. Participant names are given in lines 2 to 4. Al-
though the numbers are not mandatory, DPVK requires that
the —> symbol must appear immediately before each partic-
ipant’s name. Line 5 gives the number of rules. Similarly,
the —> symbol starts each line of rules. All rules are ex-
pressed as an ordered tuple, i.e. caller calls callee.

Besides the dynamic definition, we need to obtain dy-
namic behaviour facts for the target software system. When
the call tracing option is turned on during compilation, a log
file recording all method calls chronologically is generated
during execution. DPVK manipulates the log file by remov-
ing calls to library classes that are irrelevant to design pat-
tern detection, and transforming it into an ordered RSF for-
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Figure 8. Dynamic facts extracted from the
sample Command pattern implementation

mat (i.e. calls caller callee) to facilitate instance
searching and definition comparison. Figure 8 gives the dy-
namic facts extracted for the sample implementation.

DPVK checks each set of classes discovered in stage 2
by comparing the dynamic definition with the translated dy-
namic facts. Many false positives are removed in this pro-
cess. We applied the dynamic definition of the Command
pattern to the candidate set presented in Figure 6. We will
take a closer look at the first two instances (lines 3 and 4 in
Figure 6).

1. Candidate instance 1: By substituting the classes in-
volved in this instance in the rules of the dynamic def-
inition, we determine that the following two interac-
tions have to take place if this is a true Command pat-
tern instance.

BUTTON calls MACRO_COMMAND
MACRO_COMMAND calls COMMAND

rule 1:
rule 2:

DPVK checks the dynamic facts in Figure 8 and finds

)

w

I

w

4 Design Pattern instances are found.
Invoker Command ConcreteCommand Receiver
BUTTON COMMAND QUIT_COMMAND EDITOR

BUTTON COMMAND SAVE_COMMAND EDITOR
MACRO_COMMAND COMMAND QUIT_COMMAND EDITOR
MACRO_COMMAND COMMAND SAVE_COMMAND EDITOR

Figure 9. Result of stage 3

rule 1 in line 24 but does not find rule 2. As a re-
sult, this candidate instance is deemed a false positive,
and is removed from the candidate set since it does not
comply to both rules.

2. Candidate instance 2: The rules of the dynamic defini-
tion in this case become:

BUTTON calls QUIT_COMMAND
QUIT_COMMAND calls EDITOR

rule 1:
rule 2:

The facts complying to both rules can be found in line
19 and 29 respectively. Therefore, this candidate in-
stance is kept in the candidate set since it satisfies the
dynamic definition of the Command pattern.

The final output of DPVK can be found in Figure 9. This
output indicates that a total of four pattern instances are
found. Comparing with the output from stage 2, which per-
forms only static fact checking, we can see that two false
positives are eliminated by checking the candidates’ dy-
namic behaviour in this stage.

3.4 Stage 4: Manual evaluation

This is the final stage of the pattern detection process.
Design patterns can be implemented in many different
ways. Also, the same pattern can occur in many parts of
the source code, but each time with a different intent. To in-
crease DPVK’s successful detection rate, this stage solicits
feedback from experienced developers. This stage lets de-
velopers manually verify and justify the candidate instances
from the output of stage 3. Their knowledge and experience
could be helpful in filtering out unwanted output, and in dis-
covering undetected pattern instances.

In the sample implementation, observation of the output
from stage 3 indicates that two of the reported instances are
not true Command pattern instances. These two instances
correspond to lines 5 and 6 in figure 9.

They comply to both static and dynamic definitions.
However, they are not Command pattern instances since
clearly MACRO_COMMAND is not an Invoker.

Interestingly, when we take a closer look, we find that
these instances are Composite Commands, i.e. the combi-
nation of the Composite pattern and the Command pattern.
Therefore, if our dynamic definition is expanded to include



this particular variant of the Command pattern, they can also
be identified as correct Command pattern instances.

Based on this observation, we conclude that checking
both static structure and dynamic behaviour does help us to
find pattern instances and reduce the number of false posi-
tives. However, we still can not eliminate all false positives
and find all true negatives. This is due to the following as-
pects:

1. Each pattern can be implemented in different forms,
also known as variants, depending on the problem con-
text. In this case, it is possible to have true negatives.

2. Some false positives may have exactly the same struc-
ture and behaviour as a true pattern instance, as evi-
denced in the detection of the Command pattern in the
sample implementation. In this case, false positives are
still included in the final output.

3. Currently, DPVK does not take certain factors into
consideration, such as the signature of methods, the
class type (concrete/abstract), language keywords etc.
For example, the ONCE keyword in Eiffel helps devel-
opers implement the Singleton pattern. Therefore, its
identification is essential to the detection of the Sin-
gleton pattern. However, DPVK does not recognize
the ONCE keyword yet. In order to effectively elimi-
nate false positives DPVK requires more detailed con-
straints, such as information about in which class the
ONCE keyword is used.

4 Case studies

In this section, we apply DPVK to three different sets
of implementations that contain known instances of design
patterns.

4.1 Case study 1: Sample implementations

All GoF patterns have been implemented in Eiffel in [6].
We applied DPVK to 18 of these implementations. Figure
10 presents the results of our experiments. In total, 414
tests were conducted. Five GoF patterns were not tested:
Prototype, Singleton, Facade, Chain of responsibility, and
Template Method. The reasons are:

1. Prototype. This pattern is implemented in class ANY
(all Eiffel classes inherit from ANY). It does not make
much sense to detect this pattern in an Eiffel system.

2. Singleton, Chain of Responsibility and Template
Method. These three patterns have simple static struc-
ture and dynamic behaviour. Many false positives will
be generated if we only consider the definitions based
on their static structure and dynamic behaviour. More
detailed information is required for their successful de-
tection.

3. Facade. This pattern is hard to define due to the com-
plexity of its static structure and dynamic behaviour.
The Facade pattern provides a unified interface to a
set of interfaces in a subsystem. There are simply too
many combinations to test in a non-trivial system.

In Figure 10, if no pattern instances are found, the corre-
sponding cell is left empty. Some cells contain three num-
bers and they are listed as A/B/C. A is the number of true
positives, i.e. the number of detected pattern instances that
were correctly identified. B is the number of false positives,
i.e. the number detected incorrectly. C is the number of
true negatives in the result, i.e. pattern instances that DPVK
missed.

The cells in the diagonal of the table in Figure 10 are
shaded. These shaded cells present the result of tests that
detect a pattern in its corresponding implementation. The
diagonal appears broken due to the fact that we did not at-
tempt to detect 5 patterns, as discussed above.

Since these implementations are rather small, it took no
more than ten seconds in an AMD3200/1G RAM computer
running Windows XP for DPVK to perform pattern detec-
tion in each of them. For the same reason, the manual eval-
uation stage required only up to ten minutes depending on
the complexity of the target implementation and the pattern
being detected.

Based on the collected test results, we can make the fol-
lowing observations:

1. Although DPVK reported false positives in some im-
plementations, there were no true negatives. This fact
indicates that DPVK did not miss any pattern instances
in the detection process.

2. In implementations containing instances of different
patterns, DPVK was able to find all these patterns.
For example, implementations of Facade, Flyweight,
Command and Visitor include the Composite pattern.
According to Figure 10, DPVK can recognize the
Composite pattern instances in these implementations.

3. Since the implementation of the Visitor pattern is
rather complicated, the results indicate a larger num-
ber of false positives in this implementation than that
in other implementations. Also, since the Interpreter
pattern’s definitions are simple, many false positives
of Interpreter pattern instances were found among the
implementations of various patterns. Therefore, the
complexity of the targeted system and the pattern itself
both have impact on the detection results of DPVK.

4. The recall and precision are 100% and 19.9% respec-
tively. Since creational patterns have comparatively
simple static structures and less dynamic interactions,
their false positives are more common in our test. On
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Figure 10. Results for case study 1

the other hand, most structural and behavioural pat-
terns contain the special traits of their static structure or
dynamic interactions respectively, which helps DPVK
filter out false positives.

4.2 Case study 2: Bridge pattern in Eiffel Vision

In order to get a better understanding of the effectiveness
and efficiency of DPVK, we had to test it with a larger sys-
tem. The Vision library in EiffelStudio V5.4 is an ideal sys-
tem, since it is quite large and the documentation indicates
that the Bridge pattern has been used extensively. We chose
an example implementation shipped with EiffelStudio v5.4
called Accelerator.

Figure 11 shows the static definition of the Bridge pat-
tern. After applying the Bridge static definition, DPVK

found 3941 candidate instances. Since we detect the Bridge
pattern in EiffelStudio’s Vision library, the number of can-
didate instances is rather large compared to the first case
study.

Figure 12 shows the dynamic definition of the
Bridge pattern. x is a wild card used to repre-
sent any class in the system other than the -callee
class(refinedAbstraction in the first rule). ==> adds
arestriction that the next rule must happen as a sub-message
of the current rule. This restriction confirms the call se-
quence and avoids the following case: Suppose the two calls
did happen in the chronological order as defined in these
rules. However, the second call was not triggered by the
first call, and thus these two calls are not relevant. Without
this restriction, the instances complying to the rules will be



//#roles=4

//rfAbs->refinedAbstraction

//abs—->abstraction

//imp—->implementer

//conImp->concreteImplementer

getdb ($1)

ancestor=inv inherits

DP [rfAbs, abs, imp, conImp]=
{inherits[rfAbs,abs];1i
uses [abs, imp];
ancestor[imp, conImp]}

putdb ($2, {"DP"})

Figure 11. The static definition of the Bridge
pattern

roles#=2

l->refinedAbstraction

2->concreteImplementer

rules#=2

1->% calls refinedAbstraction==>

2->refinedAbstraction calls
concreteImplementer

Figure 12. The dynamic definition of the
Bridge pattern

reported as a pattern instance. However, this would likely
be a false positive in this context.

After the false positive elimination stage, only two in-
stances were correctly reported as instances of the Bridge
pattern. Furthermore, detailed analysis indicated that the
extra restriction described above did remove two instances
that would have otherwise be reported incorrectly as Bridge
pattern instances.

4.3 Case study 3: Student implementations

We collected many pattern implementations developed
by students in the Computer Science department of York
University. As part of an assignment for a Software Desing
course, students had to implement three patterns on an ex-
isting system: Decorator, State and Visitor. We will call the
implementation of the Decorator pattern Task D, that of the
State pattern Task S, and that of Visitor Task V. All three
tasks were supposed to result in an implementation with the
same external behaviour as the original system. The differ-
ence between them is which pattern is implemented.

The students had a variety of choices to make on how to
implement the patterns in the three tasks. For example, they
could modify the existing classes and create new classes or

Pattern Task D | Task S | Task V
Decorator 41 - -
State - 42 -
Visitor - - 45
Total implementations 58 54 62

Table 2. Detection results for the three pat-
terns

other supporting resource files, as long as they encompass
the three patterns in their implementations.

After removing some implementations that generated
compile time errors or provided wrong output, we had 58,
54, and 62 valid implementations for the Decorator, State,
and Visitor patterns respectively.

The input file we used for the dynamic fact collection
was designed to invoke each component in the pattern at
run time. Since there are various ways to implement each
pattern in different projects, this input file helps but does not
guarantee the run time invocation of all pattern components.

We started with three separate experiments: Detection
of the Decorator in task D, detection of the State in task S,
and detection of the Visitor in task V. The results are shown
in Table 2. Moreover, besides these three patterns, we de-
tected the remaining 15 patterns, that were also tested in
case study 1, in the three tasks. Table 3 shows the results.
The second column is the percentage of experiments that
resulted in false positives. To assist in the comparison be-
tween the results of case study 3 and case study 1, the third
column gives the false positive percentage for case study 1.

Based on these results, we can make the following con-
clusions:

DPVK successfully conducted the detection of the three
patterns. It detected the appropriate pattern in 73.6% of
the student implementations. DPVK effectively found these
three patterns while maintaining low false positives. How-
ever, we should note that the test implementations were not
very large in size. The amount of classes in each implemen-
tation is between 20 and 30. The low system complexity
helps to reduce the rate of false positives and increase the
hit rate of true pattern instances.

As indicated in Table 2, not all pattern instances were
detected. There are two possible reasons: Either, the stu-
dents did not implement the patterns correctly, or they im-
plemented pattern variants that DPVK does not detect. As
mentioned earlier, students were allowed to choose differ-
ent ways to implement the same patterns in this project.
In order to detect different variants, DPVK requires ad-
ditional static/dynamic definitions that correspond to the
static structure and dynamic behaviour of the variants. In all
experiments, we provided DPVK with the standard defini-
tions, which are based on one of the most common variants.
Therefore, some variants will not be found.



Pattern name FP% - CS3 | FP% - CS1
Abstract Factory 36.8% 34.8%
Builder 39.7% 34.8%
Factory Method 41.4% 13.0%
Adapter 11.5% 26.1%
Bridge 20.1% 21.7%
Composite 24.1% 21.7%
Decorator 4.3% 8.7%
Flyweight 1.7% 0%
Proxy 0% 0%
Command 54.6% 30.4%
Interpreter 50.6% 47.8%
Iterator 55.2% 13%
Mediator 4.0% 4.3%
Memento 8.6% 0%
Observer 0% 0%
State 20.8% 17.4%
Strategy 18.7% 17.4%
Visitor 0% 4.3%

Table 3. Detection results for all patterns

In the second part of this case study, we found the false
positive rate in case studies 1 and 3 to be congruent ex-
cept for few patterns. Among the three types of patterns,
the structural and behavioral patterns are more “detectable”,
since the false positive rates in both case studies 1 and 3
are lower than that of the creational patterns. However, the
Command and Iterator patterns have quite high false posi-
tive rates in this case study. The rate is even higher than that
of case study 1. The major reason is that the implementa-
tions in case study 1 were much simpler. This fact refers
not only to the number of classes but also to the number of
interaction dependencies.

5 Conclusion

We presented an approach to detecting design pattern in-
stances in Eiffel systems that takes both static structure and
dynamic behaviour into account. We also presented a re-
verse engineering tool called DPVK that implements this
approach and has been applied to real Eiffel systems. The
results of three different case studies indicate that DPVK is
quite effective in detecting design pattern instances while
eliminating false positives.

Several possibilities for further research present them-
selves:

We tested DPVK with the Vision library shipped with
EiffelStudio, a rather large system. However, there is defi-
nitely room for more tests. For example, we would like to
test DPVK with an even larger system which contains dif-
ferent kinds of design patterns. The result would be helpful
for us to further refine the design and increase the effective-
ness and efficiency of DPVK in pattern detection.
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Currently, DPVK does not take method signatures and
class types into account. This additional information would
help us detect pattern instances in a more precise manner.
In terms of dynamic behaviour, we would like to be able
to distinguish creation calls from method calls with other
purposes.

Finally, the current user interface for DPVK is textual. A
graphical user interface that can depict discovered instances
in UML or BON notation would be quite helpful, especially
for the manual evaluation phase.
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