
eclipse Technology eXchange Preliminary Version

DPVK - An Eclipse Plug-in to Detect Design
Patterns in Eiffel Systems

Wei Wang, Vassilios Tzerpos 1,2

Department of Computer Science
York University

Toronto, Canada

Abstract

Design patterns are not only beneficial to the forward engineering process but also
help in design recovery and program understanding, typical reverse engineering
activities. In this paper, we introduce DPVK, a reverse engineering tool to detect
pattern instances in Eiffel systems. In order to get better detection results, we
analyze many different patterns and examine Eiffel software in terms of both static
structure and dynamic behaviour. DPVK is implemented as an Eclipse plug-in to
ensure better compatibility and extensibility.

Key words: BON, Design Pattern, Eclipse, Eiffel, Grok, Reverse
Engineering

1 Introduction

Design patterns have attracted much attention in software engineering in the
last decade. An important reason behind this trend is that design patterns are
potentially useful in both development of new, and comprehension of existing
object-oriented designs, especially for large legacy systems without sufficient
documentation.

The design patterns introduced by Gamma et al.[2] capture solutions that
have developed and evolved over time. Each design pattern indicates a high
level abstraction, encompasses expert design knowledge, and represents a so-
lution to a common design problem. A pattern can be reused as a building
block for better software construction and designer communication.

Design patterns are not only beneficial to the forward engineering pro-
cess. From a program understanding and design recovery perspective, pat-
terns provide the organization of a system and information about the role

1 Email: weiw@cs.yorku.ca
2 Email: bil@cs.yorku.ca

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Wang, Tzerpos

of each component of the system. Meanwhile, patterns can also indicate the
design rationale behind the system’s implementation.

Usage of design patterns improves the understandability of object-oriented
designs. Based on this observation, since a design pattern reflects the intercon-
nection between a certain design and the purpose behind the design, finding
instances of design patterns in a system can potentially yield the motivation
for the system’s design. A developer can get a better understanding of a
software system by studying the design patterns within it.

A typical system structure for pattern detection tools includes three parts:
a parser, a detector, and a database. The parser extracts facts from the
implementation. Then, the detector retrieves pattern definitions from the
database, compares these definitions with the facts, and outputs the detection
result. The database can also be used to store detected pattern instances for
further analysis.

Although different tools may have different structures, all of them have to
address several basic but critical issues. The three most important issues are:
how to define patterns, how to present patterns, and how to store patterns.

Definition is the kernel of these issues since it reflects the traits of the
patterns and differentiates one pattern from another. If we treat such a defi-
nition as a set of conditions, then the set must contain all necessary conditions
without any unnecessary ones. The strictness of definition is a prerequisite
for reverse engineering tools to find correct pattern instances without missing
any. The more redundancy in a pattern’s definition, the more false positives
could be reported. A typical way to define a pattern is to simply consider the
composition of its UML diagram. However, the trend is to define patterns
from both their static structure and dynamic behaviour. This way of defining
patterns not only increases completeness but also reduces redundancy.

Pattern presentation refers to the format used to facilitate documentation
and communication activities. The patterns can be presented visually in the
form of a graph, or textually using some sort of description language.

Pattern storage concerns the form by which the pattern definition and its
instances are stored. In recent research, relational databases are commonly
used to store detected pattern instances and other recovered design informa-
tion.

The challenge of fully automatic pattern detection is how to automatically
eliminate most false positives of pattern instances. Many recently developed
tools use multiple passes[18], or recursive filtering[10], to improve the detection
output. Meanwhile, both static structure and dynamic interaction[5] have
been taken into account in order to increase the hit rate and reduce the missing
rate of true pattern instances.

In general, design pattern usage in reverse engineering, especially pattern
detection, is still in its infancy and has plenty of room to improve. Since
this field appears to attract much attention recently, we could expect more
effective and robust pattern detection tools to be developed in the future.

2



Wang, Tzerpos

The purpose of this paper is twofold: to present a catalogue of design
pattern diagrams, and to propose a reverse engineering tool—DPVK(Design
Pattern Verification toolKit). The former shows both static structure and
dynamic behaviour of design patterns and the latter is used to detect/verify
patterns in Eiffel systems. It is developed in Java to enhance its portability
to various platforms, and to allow easier integration with Eclipse.

Eclipse, as introduced by Gamma and Beck[3], can be explained as a tech-
nology, a development platform, or a group of tools. It is also an ecosystem
that enables diversified contributors to interact with each other. Therefore
Eclipse is a collection of both plug-ins and access points of plug-ins. To take
advantage of the latest development techniques and to enhance DPVK’s ex-
tensibility, we chose the Eclipse framework as our development platform and
decided to implement DPVK as an Eclipse plug-in.

An Eiffel Development Tool for Eclipse is currently under development in
York University. Once it is available, DPVK can interact with it and be more
efficient and productive in detecting pattern instances.

The paper is organized as follows. In section 2, we conduct a survey of
related reverse engineering tools. Most of these tools are capable of detecting
design patterns. However, they are designed in a different context and show
various levels of availability, extensibility, efficiency, and effectiveness of pat-
tern detection. Section 3 presents some background on design patterns and
the Eiffel language. Related development tools are also introduced. In section
4, we present the catalogue of pattern diagrams and explain how we com-
pose it. Section 5 introduces DPVK’s design and implementation. Certain
parts of this section describe ongoing work. Section 6 concludes the paper
and discusses our future work.

2 Design Pattern Detection Tools

Design pattern detection tools and techniques have been catalogued in various
ways in the literature. The evaluation of the tools and techniques focuses
on their supported language, analysis approach, by-products (e.g., function
reports, call graphs, data flow diagrams)[4] and effectiveness/efficiency. In this
paper, we discuss several design pattern detection tools simply in chronological
order.

(i) Pat[12]: The Pat system is a design recovery tool for C++ applications.
It extracts design information directly from C++ header files and stores
it in a repository. Patterns are defined as PROLOG rules and the design
information is translated into facts. The Pat system can only be used to
detect structural design patterns. Both patterns and examined designs
are represented in PROLOG format. The actual matching work is done
by a PROLOG engine. In contrast to other reverse engineering tools,
Pat does not intend to do very detailed program understanding or design
recovery. Its limitation is that it has difficulty in dealing with behavioural

3



Wang, Tzerpos

patterns, since too much semantic information is required.

(ii) KT[1]: KT is a tool that can reverse-engineer design diagrams from
Smalltalk code and use this information to detect patterns. The author
of KT advocates that any tool designed to detect the artifact of design
patterns must support both static and dynamic modelling constructs. In
terms of diagram, static information includes is-kind-of and has-a rela-
tionship and dynamic information includes object interaction or message
flow. Three GOF design patterns are analyzed: Composite, Decorator
and Chain of Responsibility. The methods used for the detection of these
patterns are coded directly into the KT source code.

(iii) Seemann-Gudenberg[17]: The authors present some ideas on how to re-
cover design information from Java source code. The pattern recognition
approach proceeds step by step and different layers of abstraction are re-
vealed. First, a compiler collects information about inheritance, method
call and particular naming conventions and generates a graph as its out-
put. Next, this graph is transformed by graph grammar productions.
The transformation is done at different levels, from method call to class
association and delegation. Finally, pattern detection is conducted by
predefined criteria. Although there is only one pass through the source
code, each subsequent transformation phase relies on the result of the
previous phase.

(iv) SPOOL[13]: The SPOOL (Spreading Desirable Properties into the De-
sign of Object-Oriented, Large-Scale Software Systems) project is a joint
industry/university collaboration. As a part of the project, the SPOOL
environment for design pattern engineering supports both forward and
reverse engineering of design patterns. The SPOOL reverse engineering
environment has a three tier architecture. From bottom to top, they
are object-oriented database, repository schema and end-user tools. The
lowest tier provides physical storage of the reverse engineering model and
design information. The middle tier contains the object-oriented schema
of the reverse engineering model, comprising static structure and dy-
namic behaviour. The upper-tier consists of end-user tools implementing
domain specific functions, such as source code capturing and visualization
analysis.

(v) JBOORET[15]: JBOORET (Jade Bird Object-Oriented Reverse Engi-
neering Tool) adopts a parser-based approach to extract the higher-level
design information and conceptual model from system artifacts. The
JBOORET for C++ consists of three major components: a data extrac-
tor, a knowledge manager and an information presenter. Separating data
extraction from information representation, this architecture avoids re-
peating analysis process for each higher-level model extraction. As the
front-end, the data extractor is the only part that processes language
dependent data. This design enables JBOORET to be easily adapted

4



Wang, Tzerpos

into reverse engineering a system written in a language other than C++.
The knowledge manager contains conceptual models of the developing
language. The information presenter component organizes and generates
design information according to the user’s preference.

(vi) Heuzeroth-Holl-Hogstrom-Lowe[5]: The authors present a way to auto-
matically detect patterns by combining both static and dynamic analysis.
The former restricts the code construction and the latter the runtime be-
haviour. This analysis does not depend on coding or naming convention.
A pattern instance is defined by a tuple of program elements such as
classes, methods or attributes. These elements must conform to the rules
of a certain design pattern.

First, source code is processed by static analysis which transforms the
implementation into tuples of AST(Abstract Syntax Tree) nodes. Then,
static analysis computes predefined pattern relationships on the AST
nodes and generates the candidate set of pattern instances. The dynamic
analysis takes this set as its input. It monitors the execution of the
nodes of every tuple. It also tracks the output of the executed nodes to
check whether the candidate complies with dynamic pattern rules. The
candidate is eliminated if the rule is violated. Finally, the remaining
candidate set contains the detected pattern instances.

The authors argue that neither static nor dynamic analysis by them-
selves provide an adequate approach to finding patterns in software sys-
tems. The number of false positives is tremendously reduced by checking
protocol conformance of patterns. So far the tool can detect Observer,
Composite, Mediator, Chain of Responsibility and Visitor Patterns. Ac-
cording to [5], when the tool is applied on Java SwingSet Example and
the tool itself, the number of false positives is small, in most experiments
even zero.

3 Design Patterns and Eiffel

Classes in each design pattern interact in a precise manner and each class
is expected to show proper behaviour. Eiffel provides a mechanism, namely,
Design by Contract[16], to define such mutual obligations and benefits among
classes. Design by Contract has a sound theoretical basis, and it provides a
guideline for constructing robust designs. It lets developers precisely specify
the obligations and explicitly assign the responsibilities of clients and suppli-
ers. In the language level, assertions, precondition and postcondition clauses,
are used to define contracts between clients and suppliers. Moreover, class
invariants enable the definition of general consistency properties within each
class. A failure to comply with the contract indicates a bug. This can help
developers discover and deal with such design bugs.

Eiffel is a language with a built-in Design by Contract mechanism as well as
a language giving developers a full object-oriented design approach. Moreover,

5



Wang, Tzerpos

Eiffel offers multiple inheritance, polymorphism, static typing and dynamic
binding, genericity and safe exception handling.

3.1 EiffelStudio

There are many Eiffel compilers available in the market, some of them are
free. Among those compilers, SmallEiffel (or the GNU Eiffel Compiler, now
SmartEiffel)[19] and ISE’s EiffelStudio[9] are the most popular.

EiffelStudio is a powerful tool for realizing the full strength of the Eiffel
language. EiffelStudio contains an IDE. However, it is more than just an IDE.

System modelling, designing, implementing and debugging can be stream-
lined and done within EiffelStudio. Developers never need to switch between
multiple development environments to fulfill those tasks. Eiffel’s built-in De-
sign by Contract mechanism can prevent many of the bugs from ever occurring
and the remaining bugs can be easily traced and fixed. Also, developers do not
need extra tools to change the system architecture. Built-in testing, metrics
and productivity tools enable easy and safe development.

Since EiffelStudio runs on Windows, Unix, Linux, embedded, and even
VMS systems, developers can create an application in Eiffel and then migrate
it to any other platform Eiffel compiles to. Moreover, the latest version of
EiffelStudio supports Microsoft’s .NET framework.

Even though EiffelStudio lacks many of the features provided by Eclipse,
such as online compilation, source control, and refactoring, it still provides a
number of facilities that make development of Eiffel systems easier and more
efficient. When the Eiffel Development Tool for Eclipse is ready, we plan to
integrate our work with it.

In this paper, we chose the EiffelStudio 5.3 environment to take advantage
of its IDE and built-in support of BON (Business Object Notation). BON
[20] is a notation for analysis and design of object-oriented systems, which
emphasizes seamlessness, reversibility and software contracting. There are
two major reasons we chose BON for our work. First, BON is integrated with
EiffelStudio. EiffelCase, an integrated tool of EiffelStudio directly interfaces
with the other tools of the ISE environment and supports generation of new
system architectures as well as reverse engineering of existing ones. Second,
BON has similar function with UML while the former is easier to learn and
use. BON is based on concepts similar to those of Eiffel but can be used
independently of Eiffel.

3.2 BON CASE tool

The BON CASE tool[14] is designed to create a seamless interface between
the stages of planning, coding, and documenting. It is a self contained system
which provides facilities for dealing with use case diagrams, class diagrams,
and dynamic diagrams. This tool provides a system tree which allows easy
access to all diagrams and documentation of an Eiffel project. According to

6



Wang, Tzerpos

the author’s plans, future revisions will allow developers to forward engineer
source code into languages such as Java and Eiffel from the diagrams one can
build with this tool, or to reverse engineer a class diagram from Eiffel source
code. Since EiffelStudio does not provide facilities to draw dynamic BON
diagrams, we use the BON CASE tool to draw dynamic diagrams and make
accompanied notations in this paper.

4 Pattern diagram catalogue

In order to get a better understanding of GOF patterns and to detect them
in Eiffel source code, we analyzed both their static structure and dynamic be-
haviour. As a by-product, a diagram catalogue of GOF patterns is compiled[22].
In this catalogue, each design pattern is analyzed and presented from both
static and dynamic perspective. The static diagram illustrates the pattern
structure, especially the inheritance and invocation relationships between com-
ponent classes. On the other hand, the dynamic diagram indicates message
sequence at run time.

Jezequel et al.[11] implemented all GOF[2] design patterns in Eiffel. We
use these Eiffel implementations, EiffelStudio and the BON CASE tool to
analyze and generate a series of diagrams of GOF patterns. The Eiffel imple-
mentations were based on the SmallEiffel compiler and they used a different
Eiffel base library from the one of EiffelStudio. Therefore, before creating the
diagram catalogue, we modified these implementations and made them com-
patible with the EiffelStudio base library while keeping the original design.
After that, aided by the integrated diagram tool of EiffelStudio, we generated
static diagrams of each pattern and removed unnecessary component classes
from the diagrams to keep them simple and complete.

Contrary to the process of creating static diagrams, creation of dynamic
diagrams is done mostly manually. There are three steps to draw a dynamic
diagram: dynamic fact extraction, operation elimination and BON diagram
drawing. In the first step, we execute the Eiffel system in question, and col-
lect informatio nabout every feature call in chronological order (the executable
has been created by compiling with the call tracing option turned on). Next,
similar to what we did with static diagrams, we need to simplify the output
script since some operations are unrelated to the patterns. By reference to
the UML collaboration diagrams in [11] we remove unrelated operations and
make sure all pattern related operations remain. Finally, we draw the dy-
namic diagrams manually using the BON CASE tool. To make the diagrams
more understandable, we give a detailed description of each operation in the
diagrams.

Each dynamic diagram consists of two parts: the first part is a graph
expressing the sequence of operations within the pattern and the second part
is a notation that provides a detailed description of each operation. We present
the diagrams for the Singleton pattern as an example. The following figure is

7



Wang, Tzerpos

the static diagram for the Singleton Pattern.

8



Wang, Tzerpos

Following is the dynamic diagram for the Singleton Pattern.

5 DPVK—A toolkit to detect design patterns in Eiffel

Reverse engineering tasks are commonly done by means of text-based search
tools such as grep, sed, or awk, or by querying graph representations of source
code, such as an ASG (Abstract Syntax Graph). Our implementation, DPVK,
is an integrated text-search tool that detects design patterns in Eiffel pro-

9



Wang, Tzerpos

grams. DPVK is written in Java to gain better compatibility and portability
for multiple operating systems and development environments, such as Eclipse.

We begin by presenting Grok, a fact manipulation engine that we use for
our purpose.

5.1 Grok

Grok is a relational calculator that supports a scripting language. It was
initially created by Ric Holt in 1995 in order to manipulate binary relations
with the purpose of understanding large-scale software systems. It includes
an interpreter that can be treated as a relational processor.

Grok extracts facts from a factbase—a list of relations written in RSF
(Rigi Standard Format). The factbase collects all relationships between each
entity in a universe (it could be a single file or several files). In RSF, each
fact is represented as a triple of the form (R,x,y), which indicates relation R
contains the ordered entity pair (x,y). Grok provides set operators similar to
that of a relational database. Those operators mainly support set operations,
such as union, intersection, subsection, comparison and so on. The user can
create a script and let the Grok interpreter perform a batch of operations
upon a factbase. Grok will calculate, filter and output qualified sets of entities
which have the relationships defined by the Grok script. Grok has many other
powerful features[6].

In DPVK, Grok is an ideal language to manipulate static relationships
among classes and objects, since an extension presented in [21] allows for
efficient graph pattern matching. Each pattern static structure is defined as
several pattern rules, which are expressed as RSF triples. In DPVK, we use
the extension to match the design pattern’s static definition with static facts
extracted from Eiffel implementations. Grok captures the interactions among
a set of components and generates the candidate set of pattern instances.
In terms of static structure, DPVK takes inheritance and method invocation
relationships between classes into account.

5.2 Design

A key aspect of detecting a design pattern is how to model and define a design
pattern precisely and how to express that definition. In DPVK, each design
pattern has two definitions: one definition is based on the static structure of
the pattern and the other is based on its dynamic behaviour. DPVK uses the
special structure and behaviour to identify and pinpoint design patterns and
differentiate a design pattern from another.

More specifically, DPVK compares these two definitions with the static and
dynamic fact files of the target software system respectively. This approach is
similar to the one used in [5]. Theoretically, if both static and dynamic defini-
tions are complete and precise, all design patterns will be found and no false
positives will be output. If we treat each definition as a set of conditions, then

10



Wang, Tzerpos

complete and precise definition means no redundant conditions are included
and no necessary conditions are missing.

In the real world, a particular design pattern may be implemented as a
number of different variants in a given system. Although each variant can
still be illustrated and analyzed statically and dynamically in a similar way,
to collect all possible variants of each design pattern would be an endless
work as software systems evolve. Our solution is to create a design pattern
definition repository which stores as many variant definitions as possible. It
is clear that, the more complete the factbase, the better the chances we will
find design patterns and their variants in software systems.

5.3 Implementation

As shown in the following figure, DPVK includes three modules and runs
in four stages. These modules/stages are static fact extraction, candidate
instance discovery and false positive elimination. The fourth stage is the
manual evaluation of the results of our approach. In the following we discuss
these four stages in detail.

5.3.1 Static fact extraction

In the first step, Eiffel source code is the only input. To simplify user-system
interaction, DPVK only requires an ACE (Assembly of Classes in Eiffel) file.
The ACE file contains important information about an Eiffel project, such as
the location of all Eiffel source files and the root class name. This information
is required to extract all needed facts from the Eiffel source code.

The static fact extraction navigates around the source file directory, scans
and parses all .e files(Eiffel source code files). The output of this stage is

11



Wang, Tzerpos

static relationships between all classes. All relationships are expressed as a
triple of the form (relationship, entity1, entity2 ). The relationships we include
are inheritance (inherit class1 class2 ) and client-supplier (use ClientClass
SupplierClass).

Static relationships are retrieved by using EC (Eiffel Compiler). EC is
a command-line Eiffel compiler developed by ISE[9] (it is the same compiler
EiffelStudio uses). The extraction module manages EC to traverse all .e files
to collect static information, and consolidates the static information into static
facts. Finally, it renders the collected static facts into RSF format to interface
with Grok in stage two.

5.3.2 Candidate instance discovery

As mentioned in the GOF design pattern book [2], each design pattern has
a distinct static structure and dynamic behaviour. On one hand, the static
structure depicts the compile-time relationships between classes, which are
necessary for the design pattern, such as class A inherits class B, or class
C calls class D by method E. On the other hand, the dynamic behaviour
indicates the run-time character of the design pattern. It is usually shown as
a chronological sequence of method invocations.

In this stage, we compose the definition of the static structure of each de-
sign pattern we would like to detect. This definition is rendered as RSF and
it defines the inheritance and invocation relationship among classes partici-
pating in the design pattern. Using Grok, we compare the definition with the
facts about static relationships derived in stage one.

Once a set of classes that fits the static definition is found, we record it as
a candidate instance. Eventually, the output lists all combinations of classes
that fits the design pattern static structure. The output may contain false
positives, since the static structure of many design patterns contains a small
number of nodes and edges in a combination that is likely to be found in
software systems that do not contain the particular design pattern.

5.3.3 False positive elimination

This step deals with the elimination of false positives in the output of the
previous stage. For a large system, this step is quite important, since the
number of false positives removed in this stage may be large.

We start by composing the dynamic definition of each design pattern.
The dynamic definition is formatted as TA[7], an extension of RSF, and it
is based on the calling sequence of classes in the design pattern. Besides the
dynamic definition, we need to obtain dynamic behaviour facts for the target
software system. EC provides a “call tracing” function which generates a log
file recording all method calls chronologically. We check each set of classes
by comparing the dynamic definition with the dynamic fact file. Many false
positives are removed in this manner.

DPVK generates a list of pattern instances in XML format. This design

12



Wang, Tzerpos

aims at better adaptability that will enable other tools, especially other Eclipse
plug-ins, to access DPVK output and perform further analysis upon it.

5.4 Manual evaluation

This is the final stage of the pattern detection process. Since this stage is not
implemented yet, the following describes our immediate implementation plan.

Design patterns can be implemented in many different ways. Also, the
same pattern can occur in many parts of the source code, but each time with
a different intent. To increase DPVK’s successful detection rate, we plan to
solicit feedback from experienced developers. This stage will let developers
manually verify and justify the candidate instances from the output of stage
three. Their knowledge and experience could be helpful in filtering out un-
wanted output, and in discovering undetected pattern instances.

To let developers easily manipulate the detected pattern instances, we
are going to develop a DPVK extension that accepts the XML output from
previous stage, renders the output to a BON diagram, and allows developers
to comment on the candidate set.

6 Conclusion

In this paper, we introduce a diagram catalogue of design patterns. Each
pattern diagram includes both a static structure diagram and a dynamic be-
haviour diagram. The detailed process of generating these diagrams is also
discussed.

We also propose a reverse engineering tool called DPVK, which is used to
detect/verify patterns in Eiffel systems. DPVK operates in four stages. The
first three stages are static fact extraction, candidate instance discovery and
false positive elimination. Finally, the fourth stage lets developers manually
evaluate and justify the output of previous stages.

As mentioned in the previous section the implementation of DPVK is still
ongoing. We need to implement the final stage of DPVK and integrate it into
the existing architecture. To evaluate DPVK’s effectiveness and efficiency, we
are going to test it upon all Eiffel implementations in [11]. Also, the EiffelBase
library in EiffelStudio is an ideal test base.

DPVK can be enhanced in user interaction and visual presentation. For
example, DPVK could automatically generate BON diagrams for each pattern
candidate and enable users to work directly upon the diagram to change the
candidate’s composition.

As stated earlier, an Eiffel Development Tool for Eclipse is under devel-
opment in York University. Once it is ready, DPVK can use it to replace
EiffelStudio and EC which are currently used to extract static and dynamic
facts about the software system under examination. In the long run, DPVK
will be extended to detect design patterns in other popular object-oriented

13



Wang, Tzerpos

language such as Java, C++ etc.

References

[1] Kyle Brown. Design reverse-engineering and automated design pattern detection
in Smalltalk, Master’s thesis, North Carolina State University, 1996.

[2] Erich Gamma, R. Helm, R. Johnson, J. Vlissides. “Design Patterns — elements
of reusable object-oriented software”, Addison-Wesley, 1995.

[3] Erich Gamma, Kent Beck. “Contributing to Eclipse: Principles, Patterns, and
Plugins”, Addison-Wesley, 2003.

[4] Gerald C. Gannod, Betty H. C. Cheng. A framework for classifying and
comparing software reverse engineering and design recovery techniques, Working
Conference on Reverse Engineering, pages 77–88, 1999.

[5] Dirk Heuzeroth, Thomas Holl, Gustav Hogstrom, Welf Lowe. Automatic
Design Pattern Detection, 11th IEEE International Workshop on Program
Comprehension, pages 94–103, 2003.

[6] R.C. Holt. “Introduction to the Grok Programming Language”, University of
Waterloo, 2002.

[7] R.C. Holt. “An Introduction to TA: The Tuple Attribute Language”,
Department of Computer Science, University of Waterloo, 1998.

[8] Eclipse.org. URL:http://www.eclipse.org/.

[9] Eiffel Software Inc. URL:http://www.eiffel.com/.

[10] Jens H. Jahnke, Jorg P. Wadsack. A History Concept for Design Recovery
Tools, Proceedings of 6th European Conference on Software Maintenance and
Reengineering, page 37–46, 2002.

[11] Jean-Marc Jezequel, Michel Train, Christine Mingins. “Design Patterns and
Contracts”, Addison-Wesley, 1999.

[12] Christian Kramer, Lutz Prechelt. Design Recovery by Automated Search for
Structural Design Patterns in Object-Oriented Software, Working Conference
on Reverse Engineering,page 208–215, 1996.

[13] R. Keller, R. Schauer, S. Robitaille, and P. Page. “Pattern-based reverse-
engineering of design components”, Proceeding of 21st Conference on Software
Engineering, Los Angeles, USA, pages 226–235. IEEE, 1999.

[14] BON CASE Tool. URL:http://www.cs.yorku.ca/∼eiffel/bon case tool/.

[15] Hong Mei, Tao Xie, Fuqing Yang, Peking University. “JBOORET: an
Automated Tool to Recover OO Design and Source Models”, 25th Annual
International Computer Software and Applications Conference, page 61–76,
2001.

14

http://www.eclipse.org/
http://www.eiffel.com/
http://www.cs.yorku.ca/~eiffel/bon_case_tool/


Wang, Tzerpos

[16] Bertrand Meyer. “Object-Oriented Software Construction, Second Edition”,
Prentice Hall, 1997.

[17] J. Seemann and J.W. von Gudenberg. “Pattern-Based Design Recovery of Java
Software”, ACM SIGSOFT Software Engineering Notes, ACM Press, 1998.

[18] Forrest Shull, Walcelio L. Melo, and Victor R. Basili. An Inductive Method For
Discovering Design Patterns From Object-Oriented Software Systems, Technical
Report, Computer Science Department, University of Maryland, 1996.

[19] SmartEiffel. URL:http://smarteiffel.loria.fr/.

[20] Kim Walden, Jean-Marc Nerson. Seamless object-oriented
software architecture: analysis and design of reliable systems, Prentice Hall,
1995.

[21] Jingwei Wu, Ahmed E. Hassan and Richard C. Holt. Using Graph Patterns
to Extract Scenarios, Proceedings of 10th International Workshop on Program
Comprehension, 2002.

[22] URL:http://www.cs.yorku.ca/∼weiw/research/DPDiagrams.html.

15

http://smarteiffel.loria.fr/
http://www.cs.yorku.ca/~weiw/research/DPDiagrams.html

	Introduction
	Design Pattern Detection Tools
	Design Patterns and Eiffel
	EiffelStudio
	BON CASE tool

	Pattern diagram catalogue
	DPVK---A toolkit to detect design patterns in Eiffel
	Grok
	Design
	Implementation
	Manual evaluation

	Conclusion
	References

