
www.elsevier.com/locate/infsof

Information and Software Technology 49 (2007) 244–254
Clustering large software systems at multiple layers

Bill Andreopoulos a,*, Aijun An a, Vassilios Tzerpos a, Xiaogang Wang b

a Department of Computer Science and Engineering, York University, Toronto, Ont., Canada M3J1P3
b Department of Mathematics and Statistics, York University, Toronto, Ont., Canada M3J1P3

Received 5 July 2006; accepted 25 October 2006
Available online 8 December 2006
Abstract

Software clustering algorithms presented in the literature rarely incorporate in the clustering process dynamic information, such as the
number of function invocations during runtime. Moreover, the structure of a software system is often multi-layered, while existing clus-
tering algorithms often create flat system decompositions.

This paper presents a software clustering algorithm called MULICsoft that incorporates in the clustering process both static and
dynamic information. MULICsoft produces layered clusters with the core elements of each cluster assigned to the top layer. We present
experimental results of applying MULICsoft to a large open-source system. Comparison with existing software clustering algorithms
indicates that MULICsoft is able to produce decompositions that are close to those created by system experts.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Software clustering; Multiple layer; Categorical; MULIC; Graph
1. Introduction

Reverse engineering is the process of analyzing a system’s
internal elements and its external behavior and creating a
structural view of the system. Automatic construction of a
structural view of a large legacy system can significantly
facilitate the developers’ understanding of how the system
works. In legacy systems, the original source code is often
the only available source of information about the system
and it is very time consuming to study.

Software clustering techniques aim to decompose a soft-
ware system into meaningful subsystems, to help new
developers understand the system. Clustering is applied
to large software systems in order to partition the source
files of the system into clusters, such that files containing
source code with similar functionality are placed in the
same cluster, while files in different clusters contain source
code that performs dissimilar functions. Software cluster-
0950-5849/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2006.10.010

* Corresponding author.
E-mail addresses: billa@cse.yorku.ca (B. Andreopoulos), aan@cs.

yorku.ca (A. An), bil@cse.yorku.ca (V. Tzerpos), stevenw@mathstat.
yorku.ca (X. Wang).
ing can be done automatically or manually. Automatic clus-
tering of a large software system using a clustering tool is
especially useful in the absence of experts or accurate
design documentation. It is desirable to have a software
clustering tool that can consider both static and dynamic
system information. Automatic clustering techniques gen-
erally employ certain criteria (i.e., low coupling and high
cohesion) in order to decompose a software system into
subsystems [13,12,17]. Manual decomposition of the sys-
tem is done by software engineers. However, it is time con-
suming and it requires full knowledge of the system.

We propose the MULICsoft software clustering algo-
rithm that is based on the MULIC categorical clustering
algorithm that is described in [2]. MULICsoft differs from
MULIC in that it incorporates both static and dynamic
information (i.e., the number of function calls during run-
time) in the software clustering process. MULICsoft handles
dynamic information by associating weights with file depen-
dencies and incorporating the weights in the clustering pro-
cess through special similarity metrics. We showed that
MULIC clustering results are of higher quality than those
of other categorical clustering algorithms, such as k-Modes,
ROCK, AutoClass, CLOPE and others [2]. Characteristics

mailto:billa@cse.yorku.ca
mailto:aan@cs.yorku.ca
mailto:aan@cs.yorku.ca
mailto:bil@cse.yorku.ca
mailto:stevenw@mathstat.yorku.ca
mailto:stevenw@mathstat.yorku.ca

B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254 245
of MULIC and MULICsoft include: a. The algorithm does
not sacrifice the quality of the resulting clusters for the num-
ber of clusters desired. Instead, it produces as many clusters
as there naturally exist in the data set. b. Each cluster consists
of layers formed gradually through iterations, by relaxing
the similarity criterion for inserting objects (files) in layers
of a cluster at different iterations.

Section 2 gives an overview of previous software cluster-
ing tools. Section 3 describes the formulation of the input
data for our clustering approach. Section 4 describes the
MULICsoft clustering algorithm. Section 5 describes
experimental results on the Mozilla system. Section 6 dis-
cusses inputting additional data to MULICsoft. Section 7
discusses evaluation of the results using an alternative mea-
sure. Section 8 discusses the runtime performance. Finally,
Section 9 concludes and discusses future work.

2. Related work

Several clustering algorithms for software have been pre-
sented in the literature [3,5,6,9,11,12,14,15,17,20]. Some of
the existing software clustering tools, such as LIMBO [3],
consider dynamic information (i.e., the number of function
calls during runtime) in the clustering process, while others,
such as Bunch [12] and ACDC [17], produce clusters with a
nested structure. MULICsoft both considers dynamic
information and produces clusters with a layered structure.

In this section, we describe three algorithms: Bunch [12],
ACDC [17] and LIMBO [3,4]. In Section 5, we will com-
pare our proposed algorithm to these established software
clustering algorithms.

Bunch is a clustering tool intended to aid the software
developer and maintainer in understanding, verifying and
maintaining a source code base [12]. The input to Bunch
is a module dependency graph (MDG). Fig. 1 shows an
MDG graph. Bunch views the clustering problem as trying
to find a good partition of an MDG graph. Bunch defines a
‘‘good partition’’ as a partition where highly interdepen-
dent modules are grouped in the same cluster (representing
subsystems) and independent modules are assigned to sep-
arate clusters. Fig. 1b shows a ‘‘good’’ partitioning of
Fig. 1a. Finding a good graph partition involves systemat-
ically navigating through a very large search space of all
possible partitions for that graph. Bunch treats graph par-
titioning (clustering) as an optimization problem. The goal
of the optimization is to maximize the value of an objective
function, called modularization quality (MQ) [12].
Fig. 1. (a and b) An MDG graph and its partition of maximum MQ [12].
ACDC works in a different way from other algorithms.
Most software clustering algorithms identify clusters by
utilizing criteria such as the maximization of cohesion,
the minimization of coupling, or some combination of
the two. ACDC performs the task of clustering in two stag-
es. In the first stage, it creates a skeleton of the final decom-
position by identifying subsystems that resemble
established subsystem patterns, such as the body-header
pattern and the subgraph dominator pattern [17]. Depend-
ing on the pattern used the subsystems are given appropri-
ate names. In the second stage, ACDC completes the
decomposition by using an extended version of a technique
known as Orphan Adoption [19]. Orphan Adoption is an
incremental clustering technique based on the assumption
that the existing structure is well established. It attempts
to place each newly introduced resource (called an orphan)
in the subsystem that seems ‘‘more appropriate’’. This is
usually a subsystem that has a larger amount of connectiv-
ity to the orphan than any other subsystem.

LIMBO is introduced in [4] as a scalable hierarchical
categorical clustering algorithm that builds on the Informa-

tion Bottleneck (IB) framework for quantifying the relevant
information preserved when clustering. LIMBO has been
successfully applied to the software clustering problem
[3]. LIMBO’s goal is to create clusters whose features con-
tain as much information as possible about the features of
their contents. LIMBO considers weights representing
dynamic dependencies in the software clustering process.

3. Description of data sets

Static information on a software system represents
dependencies between the objects to be clustered. In our
case, the objects to be clustered are source files, while the
dependencies are procedure calls and variable references.
Static information on software systems is categorical,
meaning that the objects have attribute values that are tak-
en from a set of discrete values and the values have no spec-
ified ordering. We represent static information as a
categorical data set by creating an n · n matrix M, where
n is the number of files. Each row of M represents a file i

of the software system. The categorical attribute value
(CA) in cell (i, j) of M is ‘0’ or ‘1’, where ‘1’ represents that
file i calls or references file j and ‘0’ represents that file i

does not call or reference file j.
Dynamic information on a software system contains the

results of a profiling of the execution of the system, repre-
senting how many times each file called procedures in other
files during runtime. We represent dynamic information by
associating a weight with each CA in the matrix, in the
range 0.0–1.0, where 1.0 represents that file i called file j

the maximum number of times during the runtime and
0.0 represents that file i did not call file j. Fig. 2 shows an
example of a software data set in the form of a matrix.

The weights were derived by normalizing the number of
procedure calls during an execution profiling, by dividing
all numbers of calls in a column by the maximum number

{1,0.33} 0

{1,0.75} {1,1.0}

0 {1,0.5}

file1

file2

file3

file1 file1202

Fig. 2. Cells represent file dependencies. Each cell that has a CA value of
‘1’ is also associated with a weight in the range 0.0–1.0.

246 B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254
of calls in that column. Thus, the weights are real values in
the range from 0.0 to 1.0 and there is at least one weight
with a value of 1.0 in each column. The rationale behind
normalizing the weights this way is that some helper func-
tions get called thousands of times, but we do not want
them to have a stronger influence on the clustering process
than other important files that get called fewer times.

4. The MULICsoft clustering algorithm

MULICsoft clusters consist of layers, where each layer
corresponds to a different value of the similarity criterion
used for inserting objects (files) in clusters. An optional
Fig. 3. The MULICsoft
final step merges similar clusters into a hierarchy to find
more interesting cluster structures.

Each MULICsoft cluster has a mode. Assuming that the
objects in the data set are described by m categorical attri-
butes, the mode of a cluster c is a vector
lc = {lc1 , . . . ,lcm}. The ith position lci is set to ‘1’ if there
is at least one object in cluster c that has a value of ‘1’ in the
ith attribute. We do not use the most frequent value for
each position of the mode as in the traditional k-Modes
[8], because with our data set most or all values of the mode
would be set to ‘0’.

MULICsoft ensures that when each object o is clustered it
is inserted into the cluster c with the most similar mode lc,
thus maximizing the similarity between object and mode:

similarityðo; lcÞ ð1Þ

where o is an object in the data set and lc is the mode of the
cluster c in which o is to be inserted. The similarity metric
will be described in Section 4.1.

Fig. 3 shows the main part of the MULICsoft clustering
algorithm. The algorithm starts by reading all objects from
clustering algorithm.

cluster 1 cluster 2 cluster 3

layer 1

layer 2

layer 3

layer 4

Fig. 4. A MULICsoft cluster consists of one or more layers representing
dissimilarities between the objects and mode. Ovals are layers and circles
are objects.

B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254 247
the input file and storing them in S. Objects (files) are
ordered from lowest to highest degree. The first object is
inserted in a new cluster, the object becomes the mode of
the cluster and the object is removed from S. Then, it con-
tinues iterating over all objects that have not been assigned
to clusters yet, to find the closest cluster. In all iterations,
the closest cluster for each unclassified object is the cluster
with the highest similarity between the cluster’s mode and
the object, as computed by the similarity metric.

The variable / is maintained to indicate how high the
dissimilarity is allowed to be between an object and
the closest cluster’s mode for the object to be inserted in
the cluster. Initially / equals 1, meaning that only one val-
ue can differ between an object and the closest cluster’s
mode. If the number of different values between the object
and the closest cluster’s mode is greater than / then the
object is inserted in a new cluster on its own, else, the object
is inserted in the closest cluster and the mode is updated.

At the end of each iteration, all objects assigned to clus-
ters of size one have their clusters removed so that the
objects will be re-clustered at the next iteration. This
ensures that the clusters that persist through the process
are only those containing at least two objects. Objects
assigned to clusters of size greater than one are removed
from the set of unclassified objects S, so those objects will
not be re-clustered.

At the end of each iteration, if no objects have been
inserted in clusters of size greater than one, then the vari-
able / is incremented by d/. Thus, at the next iteration
the criterion for inserting objects in clusters will be more
flexible. The iterative process stops when all objects are
classified in clusters of size greater than one, or / exceeds
a user-specified threshold. If the threshold equals its default
value of the number of attributes m, the process stops when
all objects are assigned to clusters of size greater than one.

The MULICsoft algorithm can eventually classify all
objects in clusters, even if the closest cluster to an object
is very dissimilar, because / can continue increasing until
all objects are classified. Even in the extreme case, where
an object o with m attributes has only zero or one value
similar to the mode of the closest cluster, it can still be clas-
sified when / = m or / = m � 1, respectively.

Fig. 4 illustrates what the results of MULICsoft look
like. Each cluster consists of one or more different ‘‘layers’’.
The layer of an object represents how high the object’s dis-
similarity was to the mode of the cluster when the object
was assigned to the cluster. The cluster’s layer in which
an object is inserted depends on the value of /. Bottom lay-
ers such as 1000 correspond to higher values of / and have
a lower coherence – meaning a higher average dissimilarity
between all pairs of objects in the layer. MULICsoft starts
by inserting as many objects as possible in top layers – such
as layer 1 – and then moves to bottom layers, creating them
as / increases.

If an unclassified object has equal similarity to the
modes of the two or more closest clusters, then the algo-
rithm tries to resolve this ‘tie’ by comparing the object to
the mode of the top layer of each of these clusters – the
top layer of a cluster may be layer 1 or 2 and so on. Each
cluster’s top layer’s mode was stored by MULICsoft when
the cluster was created, so it does not need to be recomput-
ed. If the object has equal similarity to the modes of the top
layer of all of its closest clusters, the object is assigned to
the cluster with the highest bottom layer. If all clusters have
the same bottom layer then the object is assigned to the
first cluster, since there is insufficient data for selecting
the best cluster.

4.1. Similarity metric for comparison of objects to modes

A similarity metric is used to find the closest cluster to
an object, by computing the similarity between the cluster’s
mode and the object. MULICsoft handles dynamic infor-
mation by associating ‘‘weights’’ in the range of 0.0–1.0
with CAs of an object and incorporating these weights in
the clustering process through special similarity metrics
that consider CAs and weights. The weights were extracted
as described in Section 3. We represent the weights of an
object o as a vector w_o and the similarity metrics use the
weight vectors w_o.

The similarity metric amplifies the weights of the objects
as follows:

similarityðo; lÞ ¼ 1

m
�
Xm

i¼1

cþ w ox
i

cþ 1
� rðoi; liÞ

rðoi; liÞ ¼
1 if oi ¼ li ¼ 1

0 otherwise

�

The function r returns 1 if an object o and a mode l have
identical CAs of ‘1’ at a position i and returns 0 otherwise.
When calculating the similarity between a mode l and an
object o, pairs of ‘0’ attribute values between mode and ob-
ject are ignored.

This similarity metric places more importance on high
weights (1.0) than low weights (0.0). The parameter c is a
constant representing a standard contribution to the simi-
larity metric in case o and l equal ‘1’ at position i but
the weight w_oi is 0.0. For the experiments presented in this

248 B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254
paper we set c = 0.25 as it gives a sufficient contribution to
the metric for high quality results; we also tested other val-
ues such as c = 0 but they gave worse results. The param-
eter x takes an integer value greater than or equal to 1,
which amplifies the relative contributions of the large
weight values (close to 1.0) to the similarity. The intuition
for this similarity metric is that for each pair of CAs with
identical values of ‘1’ between o and l the contribution
to the similarity result should be at least c/(c + 1) = 0.2
(c = 0.25), for the lowest weight of 0.0. The maximum con-
tribution, for the highest weight of 1.0, is 1.0. For example,
for x = 1 the contribution to the similarity result ranges
from 0.28 for a low weight of 0.1 to 1.0 for a high weight
of 1.0. For x = 2 the contribution to the similarity result
ranges from 0.208 for a low weight of 0.1 to 1.0 for a high
weight of 1.0.

Fig. 5 shows the shape of the values returned by the sim-
ilarity metric for x = 1 and x = 3. Each object in this exam-
ple has 10 CAs and weights. This graph shows that an
object is more likely to be assigned to a cluster if all CAs
match the mode with high weights of 1.0. An object is less
likely to be assigned to a cluster if all CAs match the mode
with lower weights of 0.5 or 0.1 or 0.0. An object is even
less likely to be assigned to a cluster if only 1 CA matches
the mode with a high or low weight.
Fig. 6. Merging clusters into a hierarchical tree structure.
4.2. Ordering the objects before clustering

When running MULICsoft with different random order-
ings of the data set objects (files), the result is often differ-
ent. The modes and clusters are influenced most by the
attribute values of the files that are clustered first in top
cluster layers. It makes more sense to cluster first the files
of low degree (i.e., files that call few files) and last the files
that call many files. Two files of high degree are unlikely to
Fig. 5. The function surface of the similarity metric (c = 0.25) for x = 1 and x

and 1.0.
call the exact same files, thus there are unlikely to be many
files of high degree in top cluster layers. By ordering the
files and presenting them to the clustering process from
low to high degree, and by relaxing / gradually, the clus-
ters get an onion-layered structure where files in top layers
call similar sets of files and files in bottom layers call less
similar sets of files.

4.3. Merging clusters into a tree structure

A hierarchical cluster tree structure can be constructed,
by merging pairs of clusters in order of increasing dissimi-
larity between their modes. Fig. 6 shows the merging pro-
cess. This process reduces the total number of clusters
and may improve the quality of the results. This hierarchi-
cal clustering helps an expert to start with 20–30 large clus-
ters and then zoom into more elaborated clusters.
= 3. There are 10 categorical attributes. Weight values range between 0.0

1 http://www.cs.yorku.ca/~billa/MULICsoftware05/
2 A Java implementation of MoJo is available for download at: http://

www.cs.yorku.ca/~bil/downloads/

B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254 249
4.4. Detection of outliers

MULICsoft will eventually put all the objects in clusters
if the threshold for / equals its default value of the number
of attributes m. When / equals m, any object that remains
unclassified will be inserted in the lowest layer of a cluster.
This is undesirable if the object is an outlier and has little
similarity with any cluster. The user can disallow this situ-
ation from happening by specifying a value for threshold

that is less than m. In this case when / exceeds the maxi-
mum allowed value specified by threshold, any remaining
objects are treated as outliers. We showed that top layers
are more reliable than lower layers in [2].

4.5. MULICsoft characteristics for software clustering

MULICsoft includes characteristics specific for software
clustering, allowing the incorporation of both static and
dynamic system information in the clustering process. Such
characteristics include the mode’s updating and special
similarity metrics used to compute the similarity between
a mode and an object.

While the MULICsoft clustering algorithm follows the
basic framework of k-Modes [8], it has substantially differ-
ent characteristics. First, clusters are layered. Second, the
number of clusters is not specified by the user – clusters
are created, removed or merged, as the need arises. k-
Modes requires the user to specify the number of clusters
and the algorithm builds and refines the specified number
of clusters. Third, all MULICsoft clusters are of size two
or greater.

Some of the benefits of our clustering approach include:
a. Multi-layer clustering of a software system may help the
user identify files making similar calls, as well as file calls
that occur most frequently within each cluster. The multi-
layer clustering can help experts find top-layer files in a
cluster that make the most frequent calls. b. The hierarchi-
cal cluster organization allows the expert to start with 20–
30 large clusters and then zoom into clusters to study
smaller subclusters. The number of clusters can be reduced
or increased as the user wishes. c. Each cluster can have a
label associated with it, based on the most frequently called
files in the cluster. d. The multi-layer clustering can help
visualization tools represent the software architecture
better.

5. Results for clustering mozilla with MULICsoft

In order to evaluate the applicability of MULICsoft to
the software clustering problem, we applied it to the Moz-
illa software system and compared its output to that of
other well-established software clustering algorithms. We
experimented with Mozilla version 1.3 that was released
in March 2003. It contains approximately four million lines
of C and C++ source code. We have placed all of our
results online; we have also made available the complete list
of the 1202 Mozilla files used in our clustering experiments,
as well as the static and dynamic information, thus allow-
ing replication of all our experiments.1

A static dependency graph was extracted using Swagkit
[16]. In order to extract dynamic information one needs a
comprehensive test suite that exercises all features of the
given software system. For most software systems, such a
test suite does not exist. In our case, we were able to use
the smoke tests provided by the project combined with test
suites published for individual subsystems. This yielded a
dynamic dependency graph comprised of 1202 source files.

An authoritative decomposition of the Mozilla source
files for version M9 was presented in Ref. [7]. For the eval-
uation portion of our work, we used an updated authorita-
tive decomposition for version 1.3 [21]. The authoritative
decomposition consists of 10 clusters.

We compared MULICsoft to the three software cluster-
ing algorithms presented in Section 2: ACDC [17], Bunch
[12], LIMBO [4]. All algorithms were given information
concerning only the 1202 source files present in the dynamic
dependency graph.

To evaluate the clustering results we compared them
with the authoritative manual decomposition, using the
MoJo distance measure2 [17,18]. MoJo measures the dis-
tance between two decompositions of the same software
system by computing the number of Move and Join oper-
ations one needs to perform in order to transform one to
the other. Intuitively, the smaller the distance of a pro-
posed decomposition to the authoritative one, the more
effective the algorithm that produced it.

MULICsoft clusters the 1202 Mozilla files into 100–200
clusters without merging the clusters after the clustering
process. The clusters produced for Mozilla before merging
have sizes ranging from 3 to 37 files. The results indicate
that MULICsoft outperforms other software clustering
algorithms, such as LIMBO, Bunch and ACDC. The MoJo
distances for ACDC, Bunch and LIMBO applied to clus-
tering the Mozilla software system are shown in Table 1.
MULICsoft clusters all Mozilla system files, without treat-
ing any as outliers, giving MoJo distances as low as 377, as
explained in the next section.

5.1. Results for various x values of the similarity metric

Table 2 shows results for various values of x. The exper-
iments use a linear growth of / by setting / to an initial
value of 1 and increasing it by a constant value d/, after
each loop where no object was classified in a cluster of size
greater than one. We set threshold equal to its default value
of the number of attributes m, so that no objects are treated
as outliers and all 1202 files are clustered. We do not merge
the clusters after the clustering process.

As Table 2 shows, the MoJo distance to the authorita-
tive manual decomposition is significantly lower than the

http://www.cs.yorku.ca/~billa/MULICsoftware05/
http://www.cs.yorku.ca/~bil/downloads/
http://www.cs.yorku.ca/~bil/downloads/

Table 1
ACDC, Bunch, LIMBO results for clustering Mozilla

Software clustering
algorithm

MoJo
distance

Number of
clusters

Files
classified

ACDC 439 205 1202
Bunch 440 21 1202
LIMBO 438 75 1202

Table 2
MULICsoft results for clustering Mozilla with different similarity metric x

values

Similarity metric MoJo distance Number of clusters d/

x = 1 391 204 150
x = 2 383 197 150
x = 3 382 198 150
x = 4 382 193 150
x = 5 377 194 150

250 B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254
distances of ACDC, Bunch and LIMBO. For a value of
x = 5, the results are especially good with a MoJo distance
of 377 to the authoritative decomposition. The reason why
x = 5 produces the best results is that the similarity metric
amplifies significantly the effect of the high weights on the
clustering process. We tried setting x to even higher values,
such as 6, 7 and 9, but the MoJo distance no longer
decreased. Thus, a high value for the parameter x improves
the results until a specific point. As x decreases to 2 and 1,
the results are still good, with MoJo distances of 383 and
391, respectively.

For the experiments presented in this paper we set
c = 0.25. We also experimented with setting c = 0. The
best resulting MoJo distance for c = 0 was 417 by using
a lower value of d/ of 80. The reason for this is that with
c = 0.25 more files are classified in the correct cluster dur-
ing the first and second iterations, because of the amplified
effect of the weights on the clustering process. With c = 0,
on the other hand, fewer files are classified correctly dur-
ing the first and second iterations and the lower value of
d/ allows some of the files to be considered instead at
the next iterations.
Fig. 7. MULICsoft results for clustering Mozilla with x = 5 and x = 1, respec
d/. k is the number of clusters.
5.2. MULICsoft with linear and exponential growth of /

We experimented with a linear growth of / by setting /
to an initial value of 1 and increasing it by a constant value
d/ after each loop at which no object was placed in a clus-
ter of size greater than one. Fig. 7 shows our results for a
linear growth of / by constant value d/. We let threshold

have its default value equal to the number of attributes
m, so that no objects are treated as outliers and all 1202
files are clustered. We do not merge the clusters after the
clustering process.

As Fig. 7 shows, a value of d/ between 70 and 150 gives
the best results overall, with MoJo distances as low as 377.
The reason why a high value of d/ is used is that sufficient
files should be clustered at each iteration so that the modes
of the clusters are given the opportunity to change, as
opposed to remaining static.

For both x = 5 and x = 1 a value of d/ = 150 gives the
best results with MoJo distances of 377 and 391, respective-
ly. For x = 5 the best result has 194 clusters, while for
x = 1 the best result has 204 clusters. The reason for this
is that with x = 5 more files are classified in the correct
cluster during the first and second iterations, because of
the amplified effect of the weights on the clustering process.
With x = 1, on the other hand, fewer files are classified cor-
rectly during the first and second iterations and some of the
files are considered again at the next iterations, resulting in
more clusters.

We also experimented with increasing / exponentially
(2y), by setting / to an initial value of 1 and multiplying it
by 2 after each loop at which no object was classified in a
cluster of size greater than one. The MoJo distance increas-
es to 456 and the number of clusters k = 280. Even though
the exponential growth of / does not produce the best
results in this case, it can still produce good results when
we treat some objects as outliers, as described in Section 5.4.
5.3. Results after merging clusters into a tree structure

MULICsoft provides the capability to merge clusters
into a hierarchical tree structure, as described in Section
tively. The initial value of / is 1 and / increases linearly by constant value

Fig. 8. MoJo distances after merging down to various numbers of
clusters.

Table 3
MULICsoft results for setting a threshold for / and treating some files as
outliers

d/ Threshold

for /
MoJo
dist.

Number of
clusters

Number of
outliers

Linear growth of /
130 131 397 213 83
120 121 400 208 93
10 50 500 305 230
10 80 484 330 96
50 51 469 260 191
60 61 449 250 155
99 100 420 215 104

Exponential growth of /
Multiply /

by 2
32 540 318 285

Multiply /
by 2

64 515 345 135

All outliers are placed in one cluster. The initial value of / is 1. The
similarity metric is used with x = 2.

B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254 251
4.3. Fig. 8 presents the MoJo distances after merging down
to various numbers of clusters. Without any merging the
number of clusters is 199. A value of x = 5 is used. The ini-
tial value of / is 1 and it increases linearly by constant val-
ue d/ = 140. We let threshold have its default value equal
to the number of attributes m, so that no objects are treated
as outliers and all 1202 files are clustered.

As Fig. 8 shows, we merge clusters until the number of
clusters decreases to 20. The MoJo distance to the author-
itative decomposition decreases overall until there are 50
merged clusters in total. At the best point, at 136 merged
clusters the MoJo distance is 340. As clusters decrease
below 50, the MoJo distance starts increasing. An expert
could start by investigating the 40–50 large clusters and
then zoom in to clusters to explore their refined structure
and their subclusters.
5.4. Treating objects as outliers by setting a threshold for /

Some times it may be desirable to treat the objects in
bottom layers of clusters as outliers. Objects are treated
as outliers by setting the threshold for / to a value less than
the number of attributes m, as discussed in Section 4.4.
When / exceeds the maximum allowed value specified by
threshold, any remaining objects are treated as outliers by
classifying them independently in clusters of size one. For
example, setting the threshold for / to the value 150 means
that clustering will stop at layer 150 and any objects that
would be clustered in layers greater than 150 are treated
as outliers. We showed that lower layers are less reliable
than higher layers in [2]. We experiment with various
thresholds for /, for both linear and exponential growths
of /. We use a value of x = 2. We do not merge the clusters
after the clustering process.

Table 3 shows the results for placing all outliers in one
cluster together. We also experimented with placing each
outlier in an independent cluster of size one; in this case
many Moves and Joins need to be performed for the com-
puted decomposition to reach the authoritative manual
decomposition and the MoJo distance is high. The MoJo
distance with all outliers placed in one cluster together is
significantly lower than if each outlier is placed in an inde-
pendent cluster of size one.

The MoJo distance decreases further if the outliers are
ignored and the distance is computed between the intersec-
tion of files in the computed decomposition with files in the
authoritative decomposition. A distance metric other than
MoJo could be useful for measuring the distance between a
computed decomposition and an authoritative decomposi-
tion when outliers are involved.
5.5. Discussion: structure and consistency of decompositions

Experts want an automated tool for clustering software
systems, such that a human can inspect the software archi-
tecture in a more efficient manner. While reverse engineer-
ing, an expert is interested in knowing which calls occur
frequently and uniquely within each cluster and are most
characteristic of the cluster. Our proposed software cluster-
ing approach is based on calling relationships and creates
clusters that have a multi-layered structure and are hierar-
chically organized. The clusters have an onion-layered
structure based on level of similarity of the files to the clus-
ter. The hierarchical structure gives the expert a semantic
hierarchy for software inspection.

Most clusters have several layers, such as 1, 141 and 281
(for d/ = 140). Several files are always clustered in top lay-
ers, regardless of the value of d/. Since the files are ordered
from low to high degree as described in Section 4.2, the files
in top layers are usually calling files that are very character-
istic of the cluster, meaning that within the entire system
they are frequently called by files in the cluster. Fig. 9 illus-
trates an example of a cluster containing JavaScript files,
which in the authoritative decomposition are all placed in
one cluster together. Files in top layer 1 call files character-
istic of the cluster, while files in bottom layer 141 call other
files too. For instance, in this cluster the files in layer 1 call

layer 1

layer 141

jsd_lock jsd_obj

Fig. 9. A MULICsoft cluster of JavaScript files with two layers: 1 and
141. Circles represent files and arrows represent calls. The files in layer 1
call the jsd_ock.c and jsd_obj.c files, while the files in layer 141 call
other files too.

Table 4
MULICsoft results for clustering Mozilla with additional categorical data

Categorical data sets MoJo distance Number of clusters

Dev + Dir + LocEQ + Tim 228 170
Dev + Dir + LocEQ 210 168
Dev + Dir + Tim 192 175
Dev + Dir 211 165

The initial value of / is 1 and it increases linearly by constant value
d/ = 80. The similarity metric is used with x = 3 threshold has its default
value. No merging is done on the clusters after the clustering process.

252 B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254
the jsd_lock.c and jsd_obj.c files which are Java-
Script specific.

We notice that there are groups of files always clustered
together. For example, the JavaScript files are usually clus-
tered together in the same clusters. Without merging clus-
ters, the JavaScript files are spread out over about 10
clusters, which are pretty homogeneous containing mostly
JavaScript files. After merging down to a total number of
50 clusters, the JavaScript files are spread out over 2–3
merged clusters only. As expected, the merged clusters con-
tain a higher absolute number of non-JavaScript files than
the non-merged clusters.
6. Inputting additional categorical data

We integrated the following categorical data sets with
the Mozilla file data set, to produce improved results when
MULICsoft clustering is applied to the integrated data
sets.

• Developers (Dev): The ownership information, i.e., the
names of the developers involved in the implementation
of the file.

• Directory path (Dir): The full directory path for each
file. In order to increase the similarity of files residing
in similar directory paths, the set of all subpaths for each
path is included.

• Lines of code (Loc): The number of lines of code for
each of the files.The values are discretized by dividing
the full range of loc values into the intervals {0; 100},
{100; 200}, {200; 300}, etc. Each file is given a feature
such as RANGE1, RANGE2, RANGE3, etc.

• Time of last update (Tim): The time-stamp of each file
on the disk.Only the month and year are included.

Table 4 shows the MULICsoft MoJo distances to the
authoritative Mozilla decomposition with inputting addi-
tional categorical data sets. The MoJo distances to the
authoritative decomposition improve significantly with
inputting additional categorical data sets to MULICsoft.
After inputting all four additional data sets of Dev +
Dir + LocEQ + Tim, the result is 228, which is much better
than the best previous result of 388 for not inputting any
additional categorical data. As fewer additional categorical
data sets are input, the MoJo distance decreases further.
For three additional categorical data sets the distance
decreases to 192 and 210. For two additional categorical
data sets the distance decreases to 211.
7. Using an alternative evaluation measure

The evaluation results presented in the previous sections
were based on the MoJo distance between the decomposi-
tion created by MULICsoft and the authoritative decom-
position of Mozilla. In order to avoid basing our results
solely on the use of MoJo distance, we measured the simi-
larity of the candidate decompositions prepared by
MULICsoft to the authoritative one using also the Kos-
chke–Eisenbarth (KE) measure [10].

The KE measure is loosely based on the amount of over-
lap between corresponding clusters in the two decomposi-
tions. Its value is normalized to a percentage scale. The
higher it is, the closer the two compared decompositions
are. As a result, if the results obtained from the two evalu-
ation methods (MoJo and KE) are to be congruent, we
would expect that as the value of KE increases, MoJo dis-
tance decreases, and vice versa.

We applied both evaluation methods to 115 different
candidate decompositions created by MULICsoft. These
decompositions were created using a variety of thresholds,
as well as many different combinations of additional infor-
mation. The relation between the KE and MoJo values
obtained are presented in Fig. 10.

A first observation would be that the two measures do
not appear to be congruent, since the scatterplot does not
seem to be an approximation of a monotonously decreas-
ing function as expected. However, closer inspection shows
that there are two clusters of results. The first one, in the
top left part of the graph, corresponds to decompositions
of large MoJo distance and low KE value, while the second
one, in the bottom right part of the graph, corresponds to
smaller MoJo distance and higher KE values. This indi-
cates that both measures clearly differentiate effective
decompositions from not so effective ones, a result that
agrees with the experimental data presented in Ref. [3].

These results indicate that, while small differences in
MoJo distance are not indicative of a clear ranking
between two candidate decompositions, larger MoJo

 150

 200

 250

 300

 350

 400

 450

 500

 550

 10 20 30 40 50 60 70 80 90

M
oJ

o

KE

Fig. 10. The relation between KE and MoJo values for 115 different decompositions.

Table 5
MULICsoft runtimes, in seconds

Time (seconds) Sim. metric d/ Threshold

12 x = 3 90 Default (1202)
12 x = 3 120 Default (1202)

B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254 253
distance discrepancies, as was the case in many of the
experimental results presented in this paper, can clearly
designate effective candidate decompositions. Therefore,
we believe that the results presented in earlier sections are
mostly independent of the evaluation method used.
29 x = 2 10 50
13 x = 2 120 121
13 x = 3 50 Default (1202)

The initial value of / is 1 and it increases linearly by constant value d/.
8. Computational complexity

The best-case complexity of MULICsoft has a lower
bound of X(mNk) and its worst-case complexity has an
upper bound of OðmN 2 threshold

d/ Þ. Often m > N, since in a
categorical data set the number of attributes m is usually
smaller than the number of objects N. The cost is related
to the number of clusters k generated throughout the pro-
cess. Usually, the number of clusters k is smaller than the
number of objects N and all objects are clustered in the ini-
tial iterations, thus N often dominates the cost. The worst-
case runtime would occur for the rather unusual data set
where all objects were extremely dissimilar to one another,
such that the algorithm had to go through all m iterations
and all N objects were clustered in the last iteration when
/ = m. Decreasing the value of threshold or increasing
the value of d/ improves the runtime, often without weak-
ening the clustering quality. A value of d/ greater than 1
often improves the clustering quality by allowing the
modes to change from one iteration to another [2]. The
MULICsoft complexity is comparable to that of k-Modes
of O(mNkt), where t is the number of iterations [8].
8.1. Runtime evaluation

Our experiments were performed on a Sun Ultra 60 with
256 MB of memory and a 300 MHz processor. Table 5
shows the run times it took for MULICsoft to cluster the
files of the Mozilla system. Most of our trials had runtimes
of less than 30 s.

9. Conclusion and future work

We have presented the MULICsoft software clustering
algorithm. MULICsoft creates decompositions that are
close to manually created ones. MULICsoft does not sac-
rifice the quality of the results for the number of clusters,
which in k-Modes is defined strictly before the process [2].

For each cluster, MULICsoft forms layers of varying
interdependencies between the files. This can be useful for
software comprehension. MULICsoft starts by forming a
first layer of highly interdependent files, using strict criteria
concerning which files to insert in the layer. The first layer
of a cluster contains the highly interdependent files that are
at the core of a subsystem. As the process continues,
MULICsoft relaxes its criteria, forming layers with files
that are less interdependent than the previous layers. The
multi-layer structure of MULICsoft is ideal for clustering
software system data. MULICsoft clusters are representa-
tive of the underlying patterns in a software system,
because differing layers of interdependencies exist in a clus-
ter between files.

254 B. Andreopoulos et al. / Information and Software Technology 49 (2007) 244–254
MULICsoft similarity metrics consider dynamic system
information by incorporating weights on the file interde-
pendencies that are derived from a runtime profiling of
the system. In the end, the human expert has the option
of merging clusters that are very similar to build larger
clusters and reduce the number of clusters.

We evaluated the quality of MULICsoft results on
the Mozilla software system by computing the MoJo
distance to an existing expert-defined authoritative
system decomposition. On this data set, the MULICsoft
MoJo distance to the authoritative decomposition was
lower than the distances of LIMBO [4], Bunch [12]
and ACDC [17]. The MULICsoft results are improved
by inputting additional categorical data sets or ordering
the objects by the frequency of their categorical attribute
values. Our evaluation of the quality of MULICsoft
results on Mozilla using the alternative KE measure sup-
ports the high quality of the results. Finally, we showed
that the runtime of MULICsoft was satisfactory as it
took between 10 and 30 s.

The results for identifying outliers indicate that the dis-
tance to the authoritative decomposition increases if in the
computed decomposition each outlier is inserted in an inde-
pendent cluster of size one. We experimented with different
ways to handle outliers, such as inserting them all in one
cluster. This decreases the MoJo distance, since fewer
Moves and Joins need to be performed in the computed
decomposition to reach the authoritative manual decompo-
sition. Future work will include designing a different dis-
tance measure for computing the distance between a
computed decomposition and an authoritative decomposi-
tion, when outliers are involved.

One direction worth pursuing in the future is to experi-
ment with MULICsoft on more cases, both from open-
source systems and from traditional industrial systems.
Another direction worth pursuing is to improve the method
for merging clusters that are similar, to build larger clusters,
after the clustering process. This will hopefully produce bet-
ter MoJo distance results than the current merging.

References

[2] B. Andreopoulos, A. An, X. Wang, MULIC: Multi-layer Increasing
Coherence Clustering of Categorical Data Sets, Technical Report #
CS-2004-07, Department of Computer Science and Engineering, York
University, 2004.

[3] P. Andritsos, V. Tzerpos, Information-theoretic software clustering,
IEEE Transactions on Software Engineering 31 (2) (2005).

[4] P. Andritsos, P. Tsaparas, R.J. Miller, K.C. Sevcik, LIMBO: scalable
clustering of categorical data, in: Proceedings of the Ninth Interna-
tional Conference on Extending DataBase Technology (EDBT’04),
March 2004.

[5] L.A. Belady, C.J. Evangelisti, System partitioning and its measure,
Journal of Systems and Software 2 (1981) 23–29.

[6] S.C. Choi, W. Scacchi, Extracting and restructuring the design of
large systems, IEEE Software (1990) 66–71.

[7] W. Godfrey, E.H.S. Lee, Secrets from the Onster: extracting Mozilla’s
software architecture, in: Proceedings of the Second International
Symposium on Constructing Software Engineering Tools (CoSET),
2000.

[8] Z. Huang, Extensions to the k-Means algorithm for clustering large
data sets with categorical values, Data Mining and Knowledge
Discovery 2 (3) (1998) 283–304.

[9] D.H. Hutchens, V.R. Basili, system structure analysis: clustering with
data bindings, IEEE Transactions on Software Engineering 11 (8)
(1985) 749–757.

[10] R. Koschke, T. Eisenbarth, A framework for experimental evalu-
ation of clustering techniques, in: Proceedings of the Eighth
International Workshop on Program Comprehension, June 2000,
pp. 201–210.

[11] C. Lindig, G. Snelting, Assessing modular structure of legacy code
based on mathematical concept analysis, in: Proceedings of the 19th
International Conference on Software Engineering, May 1997, pp.
349–359.

[12] S. Mancoridis, B.S. Mitchell, Y. Chen, E.R. Gansner, Bunch: a
clustering tool for the recovery and maintenance of software system
structures, in: Proceedings of the International Conference on
Software Engineering (ICSM’99), 1999.

[13] B.S. Mitchell, S. Mancoridis, Comparing the decompositions pro-
duced by software clustering algorithms using similarity measure-
ments, in: Proceedings of the International Conference on Software
Maintenance (ICSM’01), 2001, pp. 744–753.

[14] H.A. Müller, M.A. Orgun, S.R. Tilley, J.S. Uhl, A reverse engineering
approach to subsystem structure identification, Journal of Software
Maintenance: Research and Practice 5 (1993) 181–204.

[15] R.W. Schwanke, An intelligent tool for re-engineering software
modularity, in Proceedings of the 13th International Conference on
Software Engineering, May 1991, pp. 83–92.

[16] http://www.swat.uwaterloo.ca/~swagkit.
[17] V. Tzerpos, R.C. Holt, ACDC: an algorithm for comprehension-

driven clustering, in: Proceedings of the Seventh Working
Conference on Reverse Engineering (WCRE’00), 2000, pp. 258–
267.

[18] V. Tzerpos, R.C. Holt, MoJo: a distance metric for software
clusterings, in: Proceedings of the Sixth Working Conference on
Reverse Engineering (WCRE’99), 1999, pp. 187–196.

[19] V. Tzerpos, R.C. Holt, The orphan adoption problem in architecture
maintenance, in: Proceedings of the Fourth Working Conference on
Reverse Engineering (WCRE’97), Amsterdam, October 1997, pp. 76–
82.

[20] T.A. Wiggerts, Using clustering algorithms in legacy systems remod-
ularization, in: Proceedings of the Fourth Working Conference on
Reverse Engineering (WCRE’97), October 1997, IEEE Computer
Society Press, pp. 33–43.

[21] C. Xind, V. Tzerpos, Software clustering based on dynamic depen-
dencies, in: Proceedings of the Ninth European Conference on
Software Maintenance and Reengineering (CSMR’05), Manchester,
March 2005, pp. 124–133.

http://www.swat.uwaterloo.ca/~swagkit

	Clustering large software systems at multiple layers
	Introduction
	Related work
	Description of data sets
	The MULICsoft clustering algorithm
	Similarity metric for comparison of objects to modes
	Ordering the objects before clustering
	Merging clusters into a tree structure
	Detection of outliers
	MULICsoft characteristics for software clustering

	Results for clustering mozilla with MULICsoft
	Results for various x values of the similarity metric
	MULICsoft with linear and exponential growth of phi
	Results after merging clusters into a tree structure
	Treating objects as outliers by setting a threshold for phi
	Discussion: structure and consistency of decompositions

	Inputting additional categorical data
	Using an alternative evaluation measure
	Computational complexity
	Runtime evaluation

	Conclusion and future work
	References

