AVL TREES

• AVL Trees

AVL TREES

AVL Tree

• AVL trees are balanced.
• An AVL Tree is a binary search tree such that for every internal node \(v \) of \(T \), the heights of the children of \(v \) can differ by at most 1.
• An example of an AVL tree where the heights are shown next to the nodes:

Height of an AVL Tree

• **Proposition:** The height of an AVL tree \(T \) storing \(n \) keys is \(O(\log n) \).
• **Justification:** The easiest way to approach this problem is to try to find the minimum number of internal nodes of an AVL tree of height \(h \): \(n(h) \).
• We see that \(n(1) = 1 \) and \(n(2) = 2 \)
• for \(n \geq 3 \), an AVL tree of height \(h \) with \(n(h) \) minimal contains the root node, one AVL subtree of height \(n-1 \) and the other AVL subtree of height \(n-2 \).
• i.e. \(n(h) = 1 + n(h-1) + n(h-2) \)
• Knowing \(n(h-1) > n(h-2) \), we get \(n(h) > 2n(h-2) \)
 - \(n(h) > 2n(h-2) \)
 - \(n(h) > 4n(h-4) \)
 ...
 - \(n(h) > 2^{i}n(h-2i) \)
• Solving the base case we get: \(n(h) \leq 2^{h/2}-1 \)
• Taking logarithms: \(h < 2\log n(h) + 2 \)
• Thus the height of an AVL tree is \(O(\log n) \)

Insertion

• A binary search tree \(T \) is called balanced if for every node \(v \), the height of \(v \)'s children differ by at most one.
• Inserting a node into an AVL tree involves performing an \(\text{expandExternal}(w) \) on \(T \), which changes the heights of some of the nodes in \(T \).
• If an insertion causes \(T \) to become unbalanced, we travel up the tree from the newly created node until we find the first node \(x \) such that its grandparent \(z \) is unbalanced node.
• Since \(z \) became unbalanced by an insertion in the subtree rooted at its child \(y \), \(\text{height}(y) = \text{height}(\text{Sibling}(y)) + 2 \)
• To rebalance the subtree rooted at \(z \), we must perform a restructuring
 - we rename \(x, y \), and \(z \) to \(a, b \), and \(c \) based on the order of the nodes in an in-order traversal.
 - \(z \) is replaced by \(b \), whose children are now \(a \) and \(c \) whose children, in turn, consist of the four other subtrees formerly children of \(x, y \), and \(z \).
Insertion (contd.)

- Example of insertion into an AVL tree.

```
Oh no, unbalanced!
```

```
Whew, balanced now.
```

Restructuring

- The four ways to rotate nodes in an AVL tree, graphically represented:

Single Rotations:

```
T_0  T_1  T_2  T_3
```

Double Rotations:

```
T_0  T_1  T_2  T_3
```

Restructuring (contd.)

- Double rotations:

```
T_0  T_1  T_2  T_3
```

Restructure Algorithm

Algorithm `restructure(x)`:

Input: A node `x` of a binary search tree `T` that has both a parent `y` and a grandparent `z`
Output: Tree `T` restructured by a rotation (either single or double) involving nodes `x`, `y`, and `z`.

1. Let `(a, b, c)` be an inorder listing of the nodes `x`, `y`, and `z`, and let `(T_0, T_1, T_2, T_3)` be an inorder listing of the four subtrees of `x`, `y`, and `z` not rooted at `x`, `y`, or `z`.
2. Replace the subtree rooted at `z` with a new subtree rooted at `b`.
3. Let `a` be the left child of `b` and let `T_0, T_1` be the left and right subtrees of `a`, respectively.
4. Let `c` be the right child of `b` and let `T_2, T_3` be the left and right subtrees of `c`, respectively.
Removal

- We can easily see that performing a `removeAboveExternal(w)` can cause T to become unbalanced.

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.

- We can perform operation `restructure(x)` to restore balance at the subtree rooted at z.

- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.
Removal (contd.)

• example of deletion from an AVL tree:

Oh no, unbalanced!

Whew, balanced now.

Implementation

• A Java-based implementation of an AVL tree requires the following node class:

```java
public class AVLItem extends Item {
    int height;

    AVLItem(Object k, Object e, int h) {
        super(k, e);
        height = h;
    }

    public int height() {
        return height;
    }

    public int setHeight(int h) {
        int oldHeight = height;
        height = h;
        return oldHeight;
    }
}
```

Implementation (contd.)

```java
public class SimpleAVLTree  
    extends SimpleBinarySearchTree  
    implements Dictionary {

    public SimpleAVLTree(Comparator c) {
        super(c);
        T = new RestructurableNodeBinaryTree();
    }

    private int height(Position p) {
        if (T.isExternal(p))
            return 0;
        else
            return ((AVLItem) p.element()).height();
    }

    private void setHeight(Position p) {
        // called only if p is internal
        ((AVLItem) p.element()).setHeight(1 + Math.max(height(T.leftChild(p)),
                                                   height(T.rightChild(p))));
    }
}
```
private boolean isBalanced(Position p) {
 // test whether node p has balance factor
 // between -1 and 1
 int bf = height(T.leftChild(p)) - height(T.rightChild(p));
 return ((-1 <= bf) && (bf <= 1));
}

private Position tallerChild(Position p) {
 // return a child of p with height no
 // smaller than that of the other child
 if (height(T.leftChild(p)) >= height(T.rightChild(p)))
 return T.leftChild(p);
 else
 return T.rightChild(p);
}

private void rebalance(Position zPos) {
 // traverse the path of T from zPos to the root;
 // for each node encountered recompute its
 // height and perform a rotation if it is
 // unbalanced
 while (!T.isRoot(zPos)) {
 zPos = T.parent(zPos);
 setHeight(zPos);
 if (!isBalanced(zPos)) {
 // perform a rotation
 Position xPos = tallerChild(tallerChild(zPos));
 zPos = ((RestructurableNodeBinaryTree)T).restructure(xPos);
 setHeight(T.leftChild(zPos));
 setHeight(T.rightChild(zPos));
 setHeight(zPos);
 }
 }
}

public void insertItem(Object key, Object element) throws InvalidKeyException {
 super.insertItem(key, element); // may throw an
 // InvalidKeyException
 Position zPos = actionPos; // start at the
 // insertion position
 T.replace(zPos, new AVLItem(key, element, 1));
 rebalance(zPos);
}

public Object remove(Object key) throws InvalidKeyException {
 Object toReturn = super.remove(key); // may throw
 // an InvalidKeyException
 if (toReturn != NO_SUCH_KEY) {
 Position zPos = actionPos; // start at the
 // removal position
 rebalance(zPos);
 return toReturn;
 }
}