Overview

- Trees and Binary Trees
 - Quick review of definitions and examples
- Tree Algorithms
 - Depth, Height
- Tree and Binary Tree Traversals
 - Preorder, postorder, inorder
- Binary Search Tree

Trees: Terminology and Basic Properties

- Definitions (continued)
 - **Ancestor:** Either the node itself or an ancestor of the parent of the node.
 - **Descendant:** A node v is a descendant of a node u if u is an ancestor of v

Trees: Examples

- Organization structure of a corporation
 - R&D, Sales, Purchasing, Manufacturing
 - Domestic, International
- Table of contents of a book
 - Exams, Homework, Programs, Support code
Trees: Another Example

- Unix or DOS/Windows file system

- Internal nodes: directories
- External nodes: regular files.

Trees: Terminology

- A is the root node.
- B is the parent of D and E.
- C is the sibling of B.
- D and E are the children of B.
- D, E, F, G, I are external nodes, or leaves.
- A, B, C, H are internal nodes.
- The depth (level) of E is 2.
- The height of the tree is 3.
- The degree of node B is 2.

Property: \((\#\text{edges}) = (\#\text{nodes}) - 1\)

Trees: Binary Trees (1)

- Binary Tree
 - Ordered tree.
 - Each node has a maximum of two children.

- Definitions:
 - **Proper** Binary tree:
 Each node has either zero or two children. Every internal node has exactly two children.

 - **Left or Right Child**
 Each child of a node is labeled left or right child. Left child comes before the right child.
Trees: Binary Trees (1)

- **Left and Right Subtree**
 The subtree rooted at a left or right child of an internal node \(v\).

Trees: Binary Trees (2)

- **Recursive Definition:**
 - A *binary tree* is either
 - an external node (leaf), or
 - an internal node (the root) and two binary trees (left subtree and right subtree).

Tree Algorithms: (1)

- **Assumptions:**
 - Accessor methods \(\text{root}(v)\) & \(\text{parent}(v)\) take O(1) time.
 - Query methods \(\text{isInternal}(v)\), \(\text{isExternal}(v)\) & \(\text{isRoot}(v)\) take O(1) time.
 - Accessor method \(\text{children}(v)\) takes O(\(c_v\)) time where \(c_v\) is the number of children of \(v\).
Tree Algorithms: (2)

- Assumptions:
 - Generic methods \textit{swapElements}(v, w) & \textit{replaceElements}(v, e) take O(1) time.
 - Generic methods \textit{elements}() & \textit{positions}(v), which return Iterators, take O(n) time.
 - Iterator methods take O(1) time.

Tree Algorithms: (3)

- Depth of a node \(v \) in a Tree:
 - The number of ancestors of the node excluding \(v \) itself.
 - Recursive Definition:
 - If \(v \) is the root, depth = 0.
 - Otherwise, depth of \(v \) is one plus the depth of the parent of \(v \).

Tree Algorithms: (4)

- Recursive Algorithm to compute Depth of node \(v \):
 - Calls itself recursively on the parent of \(v \), and adds 1 to the return value.

Algorithm \(\text{depth}(T, v) \):
 if \(\text{T.isRoot}(v) \) then
 return 0
 else
 return 1 + \text{depth}(T, \text{T.parent}(v))

Tree Algorithms: (5)

- Height of a node \(v \) in a Tree:
 - Recursive Definition:
 - If \(v \) is an external node, height = 0.
 - Otherwise, height of \(v \) is one plus the max. height of a child of \(v \).
 - \textbf{Height} of a tree is the height of the root.
 - Height of a tree equals the max. depth of an external node of the tree.
Tree Algorithms: (6)

Algorithm height(T):
\[
h = 0 \\
\text{for each } v \in T.\text{positions()} \text{ do} \\
\quad \text{if } T.\text{isExternal}(v) \text{ then} \\
\quad \quad h = \max(h, \text{depth}(T, v)) \\
\text{return } h
\]

- Not very efficient!
 - Worst case running time is \(O(n^2)\).

Tree Algorithms: (7)

- More Efficient Algorithm:
 - Uses recursive defn. of height.
 - Running Time is \(O(n)\)

Algorithm height2(T, v):
\[
\text{if } T.\text{isExternal}(v) \text{ then} \\
\quad \text{return } 0 \\
\text{else} \\
\quad h = 0 \\
\text{for each } w \in T.\text{children}(v) \text{ do} \\
\quad h = \max(h, \text{height2}(T, w)) \\
\text{return } 1 + h
\]

Tree Traversals: (1)

- A traversal of a tree T:
 - Systematic way of accessing or “visiting” all nodes of T.
 - Specific action associated with “visit” to a node depends on the application - could be anything!

- Different Types of Traversals Available:
 - Differ in the way the nodes are visited.

Tree Traversals: (2)

- Preorder Traversal:
 - Root of the tree is visited first.
 - Subtrees rooted at the root’s children are then visited recursively.

```plaintext
preorder traversal
Algorithm preOrder(v)
  "visit" node v 
  for each child w of v do 
    recursively perform preOrder(w)
  reading a document from beginning to end
```
Tree Traversals: (3)

- Useful for:
 - Producing a linear ordering of the nodes of a tree where parents must always come before children.
 - Efficient way to access all the nodes of a tree:
 - Assume visiting a node takes $O(1)$ time.
 - At each node $O(1+c_v)$ where c_v is # of children of v.
 - Running Time is $O(n)$.

Tree Traversals: (4)

- Example:
 - Document tree – if external nodes are removed, traversal examines Table of Contents.
 - reading a document from beginning to end

Tree Traversals: (5)

- **Postorder Traversal:**
 - Opposite of the preorder traversal.
 - Recursively traverses the subtrees rooted at the children of the root first, then visits the root.
 - Will visit a node v after it has visited all other nodes in the subtree rooted at v.

Tree Traversals: (6)

- **Useful For:**
 - Solving problems where we wish to compute some property for each node v but computing that property requires we have already computed the property for the children of v.

\[\text{Algorithm postOrder(v)}\]
\[
\text{for each child \textit{w} of \textit{v} do}
\text{recursively perform postOrder(w)}
\]
\[\text{"visit" node v} \]
Tree Traversals: (7)

- Example: File System Tree
 - Compute the disk space used by a directory.

 - `du` (disk usage) command in Unix

 ![File System Tree Diagram](image)

Tree Traversals: (8)

- **Preorder** and **Postorder** are common ways to traverse a tree, but other traversals are available:
 - Can visit all nodes at depth d before going to depth $d+1$.
 - Use a queue!
 - Don’t necessarily need to use recursion!
 - Preorder and postorder can be done iteratively with a stack.

Binary Tree Properties (1)

- **Level**:
 - Set of all nodes of a tree T at the same depth d, as the *level* d of T.

 ![Binary Tree Level Diagram](image)

Binary Tree Properties (2)

- **Level** 0 has one node – the root, level 1 at most 2 nodes, level 2 at most 4 nodes…
 - Level d has at most 2^d nodes.
 - Maximum number of nodes on the levels of a binary tree grows exponentially as we go down the tree.
Binary Tree Properties (3)

- Let T be a proper (non-empty) binary tree with \(n \) nodes, let \(h \) be the height of T, then:

1. Number of external nodes in T is at least \(h+1 \) and at most \(2^h \).
2. The number of internal nodes in T is at least \(h \) and at most \(2^h - 1 \).
3. Total number of nodes in T is at least \(2h+1 \) and at most \(2^{h+1} - 1 \).
4. Height of T is at least \(\log(n+1)-1 \) and at most \((n-1)/2 \). That is, \(\log(n+1) - 1 \leq h \leq (n-1)/2 \).
5. Number of external nodes = 1 + number of internal nodes.