Overview

- Binary Tree traversals
 - Preorder, postorder, inorder
- Binary Tree Data Structures
 - Vector, Linked List
- General Tree Data Structures
- Converting General Trees to Binary Trees

Binary Tree Traversals: (1)

- **Preorder Traversal**:
 - Since a binary tree is also “regular tree”, can use preorder traversal for general trees. However we can simplify it!

 Algorithm

  ```
  binaryPreorder(T, v)
  if v is an internal node then
    binaryPreorder(T, T.leftChild(v))
    binaryPreorder(T, T.rightChild(v))
  perform visit action on node v
  ```

Binary Tree Traversals: (2)

- **Postorder Traversal**:
 - Can also simplify the postorder traversal for binary trees.

 Algorithm

  ```
  binaryPostorder(T, v)
  if v is an internal node then
    binaryPostorder(T, T.leftChild(v))
    binaryPostorder(T, T.rightChild(v))
  perform visit action on node v
  ```

 - Can be used to solve the expression evaluation problem.

Binary Tree Traversals: (3)

- Specialization of a postorder traversal

 Algorithm

  ```
  evaluateExpression(v)
  if v is an internal node
    return the variable stored at v
  else
    let o be the operator stored at v
    x ← evaluateExpression(leftChild(v))
    y ← evaluateExpression(rightChild(v))
    return x o y
  ```
Binary Tree Traversals: (4)

- **Inorder** Traversal:
 - Visit a node between the recursive traversals of its left and right subtrees.

Algorithm inorder(T, v)

if v is an internal node then
 inorder(T, T.leftChild(v))
perform “visit” for node v
if v is an internal node then
 inorder(T, T.rightChild(v))

Binary Tree Traversals: (5)

- Visit the nodes of T “from left to right”.
- Visits v after all nodes in its left subtree and before the nodes of its right subtree.
- Many Applications:
 - Inorder traversal of a *binary search tree* visits the elements in a non-decreasing order.
 - Tree Drawing

Binary Tree Traversals: (6)

- Example: Printing an Arithmetic Expression

- specialization of an inorder traversal
- print “(” before traversing the left subtree
- print “)” after traversing the right subtree

Binary Search Tree: (1)

- Definition:
 - Each internal node v stores an element e such that:
 - Elements stored in the left subtree of v are less than or equal to e.
 - Elements stored in the right subtree of v are greater than or equal to e.
Binary Tree Data Structures: (1)

- Vector Based Implementation:
 - **Level Ordering:** For every node v of T, let $p(v)$ be the integer defined as follows:
 - If v is the root, $p(v) = 1$.
 - If v is left child of node u, $p(v) = 2p(u)$.
 - If v is right child of node u, $p(v) = 2p(u) + 1$
 - Numbers the nodes of each level of T in increasing order from left to right (but may skip some nodes!)

Binary Tree Data Structures: (2)

- Representation of binary tree T using a vector S such that node v of T is associated with element of S at rank $p(v)$.
- Simple and efficient implementation.
 - Perform the methods root, parent, leftChild, rightChild, sibling, isInternal, isExternal and isRoot using simple math on the numbers $p(v)$.

Binary Tree Data Structures: (4)

- Let n be number of nodes of T, p_M max. value of $p(v)$ over all nodes of T.
 - Vector size $N = p_M + 1$
 - No element at rank 0!
- Vector method is fast and easy representation but can be very space inefficient if the height of the tree is large!

Binary Tree Data Structures: (5)

- Representation of a Binary tree T with a Vector S.

![Diagram of binary tree with vector representation](image)
Running Times of the Methods of a Binary Tree Implemented with a Vector:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>positions, elements</td>
<td>O(n)</td>
</tr>
<tr>
<td>swapElements, replaceElements</td>
<td>O(1)</td>
</tr>
<tr>
<td>root, parent, children</td>
<td>O(1)</td>
</tr>
<tr>
<td>leftChild, rightChild, sibling</td>
<td>O(1)</td>
</tr>
<tr>
<td>isInternal, isExternal, isRoot</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

Represent each node v of tree T by an object with reference to:

- Element stored at v.
- Position objects associated with the children and parent of v.

If v is the root of T, reference to parent is null.

If v is an external node of T, references to children are null.

To save space, when external nodes are empty, can have references to external nodes be null.

Can use a special object, NULL_NODE & every external node reference is instead to this object.
Binary Tree Data Structures: (10)

- Using the *NULL_NODE* we have to be prepared to throw an exception if the parent method is passed such an object as an argument.

Binary Tree Data Structures: (11)

- Example of a Linked Data Structure for a Binary Tree:

![Binary Tree Diagram](image)

General Tree Data Structures: (1)

- Linked Structure for General Trees:
 - Can extend the linked structure for binary trees to represent general trees.
 - No limit to the number of children a node can have, use a container (e.g. list, vector) to store the children of node \(v \) instead of using instance variables.

General Tree Data Structures: (2)

- Linked Structure for General Trees:

![General Tree Diagram](image)
General Tree Data Structures: (3)

- Can implement method children(v) by simply calling elements() method of the container.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size, isEmpty</td>
<td>O(1)</td>
</tr>
<tr>
<td>Positions, elements</td>
<td>O(n)</td>
</tr>
<tr>
<td>swapElements,</td>
<td>O(1)</td>
</tr>
<tr>
<td>replaceElements</td>
<td>O(1)</td>
</tr>
<tr>
<td>Root, parent</td>
<td>O(1)</td>
</tr>
<tr>
<td>isInternal, isExternal, isRoot</td>
<td>O(1)</td>
</tr>
<tr>
<td>Children(v)</td>
<td>O(c_v)</td>
</tr>
</tbody>
</table>

Converting a General Tree to a Binary Tree: (1)

- Representing General Trees with Binary Trees. Transform T into Binary Tree T’ as follows:
 - For each node u of T, there is an internal node $u’$ of T’ associated with u.
 - If u is an external node of T and doesn’t have a sibling immediately following it, then the children $u’$ of T’ are external nodes.

Converting a General Tree to a Binary Tree: (2)

- If u is an internal node of T and v is the first child of u in T, then $v’$ is the left child of $u’$ in T.
- If node v has a sibling w immediately following it, then $w’$ is the right child of $v’$ in T’.

- External nodes of T’ are not associated with nodes T and serve only as placeholders.

Converting a General Tree to a Binary Tree: (3)

- Can be seen as a conversion of T into T’ that takes each set of siblings \{ v_1, v_2, ..., v_k \} in T with parent v and replaces it with a chain of right children rooted at v_1, which then becomes the left child of v.
Converting a General Tree to a Binary Tree: (4)

- Example of the Conversion from a General Tree to a Binary Tree:

Priority Queue: (1)

- What is a Priority Queue?
 - An Abstract Data storing a collection of prioritized elements.
 - Supports arbitrary element insertion but supports removal of elements in order of priority.
 - The element with the highest priority can be removed at any time.

Priority Queue: (2)

- A priority queue stores elements in order of priority only!
 - No notion of position as with some other ADTs (sequences, lists etc.)

- Priority Queue ADT:
 - Each element in the priority queue has a corresponding “key” Object.
 - Key Object represents the elements priority.

Priority Queue: (3)

- “Key” Object - Definition:
 - An Object assigned to some element which can be used to rank, identify or weight the element.
 - Assigned to the element by the user or the application.
 - Maybe changed by the application if needed.
Priority Queue: (4)

- Does not need to be a single numerical value.
- Can sometimes be more complex and cannot be quantified by a single number.

Priority Queue: (4)

- In a priority queue, the key is used to assign a priority to each element:
 - A Priority Queue ranks its elements by key with a total order relation.
 - Keys:
 - Every element has its own key
 - Keys are not necessarily unique
 - Total Order Relation:
 - Denoted by ≤
 - Reflexive: \(k \leq k \)
 - Antisymmetric: if \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \), then \(k_1 = k_2 \)
 - Transitive: if \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \), then \(k_1 \leq k_3 \)

Priority Queue: (5)

Sorting with a Priority Queue

- A Priority Queue \(P \) can be used for sorting a sequence \(S \) by:
 - Inserting the elements of \(S \) into \(P \) with a series of `insertItem(e, k)` operations
 - Removing the elements from \(P \) in increasing order and putting them back into \(S \) with a series of `removeMin()` operations

Algorithm PriorityQueueSort(S, P):

Input: A sequence \(S \) of \(n \) elements, on which a total order relation is defined, and a Priority Queue \(P \) that compares keys with the same relation.

Output: The sequence \(S \) sorted by the total order relation.

```
while !S.isEmpty() do
    e ← S.removeFirst()
    P.insertItem(e, k)
while P is not empty do
    e ← P.removeMin()
    S.insertLast(e)
```

Priority Queue: (6)

The Priority Queue ADT

- A priority queue \(P \) supports the following methods:
 - `size()` Return the number of elements in \(P \)
 - `isEmpty()` Test whether \(P \) is empty
 - `insertItem(e, k)` Insert a new element \(e \) with key \(k \) into \(P \)
 - `minElement()` Return (but don’t remove) an element of \(P \) with smallest key; an error occurs if \(P \) is empty.
 - `minKey()` Return the smallest key in \(P \); an error occurs if \(P \) is empty
 - `removeMin()` Remove from \(P \) and return an element with the smallest key; an error condition occurs if \(P \) is empty.