Overview

- Undirected Graph Traversals
 - Depth-First Search
 - Breadth-First Search

Undirected Graph Traversal - DFS:

- **Definition:**
 - A *graph traversal* is a systematic procedure for visiting all vertices and edges of a graph.
 - Efficient if it visits all vertices and edges in linear time.
 - Two efficient methods:
 - Depth-First Search
 - Breadth-First Search

- **Depth-First Search (DFS):**
 - “Search” deeper in the graph whenever possible.
 - Edges are “explored” out of the the most recently visited vertex \(v \) that still has unexplored edges leaving it.
 - When all of \(v \)’s edges have been explored, search “backtracks” to explore edges leaving the vertex from which \(v \) was discovered.
 - This process continues until all vertices reachable from the original source vertex have been discovered.
 - If any undiscovered vertices remain, one of them is selected as a new source and search repeats.
Undirected Graph Traversal - DFS:

- Visualize DFS by orienting edges along the directions they are explored during the traversal.
 - Discovery or tree Edges:
 - Edges used to discover new vertices.
 - Back Edges:
 - Edges leading to already visited vertices.

Exploring a Labyrinth Without Getting Lost

- A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth, with a string and a can of red paint without getting lost.
- We start at vertex s, tying the end of our string to the point and painting it “visited”. Next we label s as our current vertex called u.
- Now we travel along an arbitrary edge (u,v).
- If edge (u,v) leads us to an already visited vertex v we return to u.
- If vertex v is unvisited, we unroll our string and move to v, paint v “visited”, set v as our current vertex, and repeat the previous steps.
- Eventually, we will get to a point where all incident edges on v lead to visited vertices. We then backtrack by unrolling our string to a previously visited vertex u. Then u becomes our current vertex and we repeat the previous steps.

Exploring a Labyrinth Without Getting Lost (cont.)

- Then, if all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure.
- When we backtrack to vertex s and there are no more unexplored edges incident on s, we have finished our DFS search.

- Discovery edges form a spanning tree of the connected component starting at start vertex s.
Undirected Graph Traversal - DFS:

- Algorithm:

 Algorithm DFS(v);
 Input: A vertex v in a graph
 Output: A labeling of the edges as "discovery" edges and "backedges"
 for each edge e incident on v do
 if edge e is unexplored then
 let w be the other endpoint of e
 if vertex w is unexplored then
 label e as a discovery edge
 recursively call DFS(w)
 else
 label e as a backedge

- Algorithm Assumptions:
 - Have a “way” to determine whether a vertex or edge has been explored or not.
 - Have a “way” to label edges as discovery or back edges.
 - This may require additional storage space and may affect running time!

Undirected Graph Traversal - DFS:

- Running Time:

 - Remember:
 - DFS is called on each vertex exactly once.
 - Every edge is examined exactly twice, once from each of its vertices.
 - For n vertices and m edges in the connected component of the vertex s, a DFS starting at s runs in O(E + m) time if:
 - The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
 - Marking a vertex as explored and testing to see if a vertex has been explored takes O(degree)
 - By marking visited nodes, we can systematically consider the edges incident on the current vertex so we do not examine the same edge more than once.
Undirected Graph Traversal - DFS:

Marking Vertices

• Let’s look at ways to mark vertices in a way that satisfies the above condition.
• Extend vertex positions to store a variable for marking

Before Position

After Position

Element

isMarked

• Use a hash table mechanism which satisfies the above condition is the probabilistic sense, because it supports the mark and test operations in $O(1)$ expected time.

Let G be a graph with n vertices and m edges represented with an adjacency list structure. There exists $O(n+m)$ algorithms based on DFS to compute:

◆ Test whether G is connected.
◆ Compute spanning tree of G if G is connected.
◆ Compute connected components of G.
◆ Compute path between two vertices of G or report no path such path exists.
◆ Compute cycle in G or report no cycle exists.

DFS Example: (1)

Determining Incident Edges:

• DFS depends on how you obtain the incident edges.
• If we start at A and we examine the edge to F, then to B, then E, C, and finally G.

The resulting graph is:

• discoveryEdge
• backEdge
• return from dead end

If we instead examine the tree starting at A and looking at F, the C, then E, B, and finally F.

the resulting set of backEdges, discoveryEdges and recursion points is different.

• Now an example of a DFS.

DFS Example: (2)
DFS Example: (11)

And we're done!
Breadth-First Search

- Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties.

 - The starting vertex s has level 0, and, as in DFS, defines that point as an “anchor.”
 - In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
 - These edges are placed into level 1.
 - In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
 - This continues until every vertex has been assigned a level.
 - The label of any vertex v corresponds to the length of the shortest path from s to v.
BFS - A Graphical Representation

a)

b)

c)

d)
More BFS

e)

f)
Algorithm BFS(s):

Input: A vertex \(s \) in a graph

Output: A labeling of the edges as “discovery” edges and “cross edges”

initialize container \(L_0 \) to contain vertex \(s \)

\(i \leftarrow 0 \)

while \(L_i \) is not empty do

create container \(L_{i+1} \) to initially be empty

for each vertex \(v \) in \(L_i \) do

for each edge \(e \) incident on \(v \) do

if edge \(e \) is unexplored then

let \(w \) be the other endpoint of \(e \)

if vertex \(w \) is unexplored then

label \(e \) as a discovery edge

insert \(w \) into \(L_{i+1} \)

else

label \(e \) as a cross edge

\(i \leftarrow i + 1 \)
Properties of BFS

• **Proposition:** Let G be an undirected graph on which a BFS traversal starting at vertex s has been performed. Then
 - The traversal visits all vertices in the connected component of s.
 - The discovery-edges form a spanning tree T, which we call the **BFS tree**, of the connected component of s
 - For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any other path of G between s and v has at least i edges.
 - If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and v differ by at most one.

• **Proposition:** Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $O(n + m)$. Also, there exist $O(n + m)$ time algorithms based on BFS for the following problems:
 - Testing whether G is connected.
 - Computing a spanning tree of G
 - Computing the connected components of G
 - Computing, for every vertex v of G, the minimum number of edges of any path between s and v.