Introduction to Computer Use II

Overview (1):
a Before We Begin
e Some administrative details

< Some questions to consider

a Topic Overview

Programming & Introduction

Winter 2006 (Section M) a Subprograms
Topic E: Subprograms - Functions and Procedures = Introduction
Monday, March 6 2006 s Function subprograms
Bill Kapralos a Function example

CSE 1530, Winter 2006 Bill Kapralos

Administrative Details (1):

e Lab Exercise

a You should be working on Ex 6-3 this week
+ Due Monday, March 13

Befor.e We Begin o Test 2 Reminder
a Wednesday, March 15 2006

o Course Drop-Deadline

s Last day to withdraw from course is Friday, March 10
2006

Some Questions to Consider (1):

o Describe the Replace function
o Describe the InStr function

o Describe the Len function

o Describe the "Mid" function

Topic Overview

CSE 1530 Winter 2006
Bill Kapralos

Introduction to Computer Use II

Introduction (1):

@ So Far, Two Alternatives to Sequential

Programming — If Statements and Loops
o These are however not the only alternatives!
o Another departure from sequential programming is a
sub-program (function, method or procedure)

s While executing a set of statements, and call to a
subprogram is encountered, execution of those
statements is interrupted

+ Execution of subprogram statements occurs and

when subprogram statements have been executed,

return back to original set of statements and
continue at point after call to subprogram

Introduction (2):

o We Have Already Encountered Subprograms
a We have made use of many subprograms up until this
point, including the following

« All the string-related functions — “"Mid", "Len",
"InStr", "Replace” efc...

« AddItem from the ListBox
= Date-related functions
« Format function
a But up until this point, the subprograms (functions)
have been given to us
« We simply use them without worrying about them!

Introduction (3):

e Overview of Topic E
o We will examine subprograms (functions) in detail
+ We will learn how to write our own subprograms
e Main concepts of the this topic
« Abstraction and modularization
+ Function subprograms
+ Procedure (or Sub) subprograms
« Transferring values via an argument list
+ The scope of variables

Subprograms

Introduction (1):
a What is a Subprogram ?

o A convenient way to encapsulate some computation
that can be then used many times over without
worrying about its implementation

Allows us to ignore Aowa job is done

« All we need to know is what is done (e.g., the
outcome)

+ Can be used by many other programs as well

CSE 1530 Winter 2006
Bill Kapralos

Introduction (2):
a Why Use Subprograms ?

s Separate the performance of some task from the

rest of the program

+ Indesigning a large program, its usually best to
“divide and conquer” — break the task down
into a number of pieces, each of which can be
programmed separately

+ Imagine having to compute some computation
many times — you can replicate the code many
times or you can write the code once within a
function and simply call the function

Introduction to Computer Use II

Introduction (3):
a Why Use Subprograms ? (cont.)
o Break large sections of code into smaller units
that perform a specific task
e By breaking your calculations into smaller tasks
Simplify maintenance that needs to be done to
the program in the future
Make the code easier to read/follow and
troubleshoot

Introduction (4):
@ Subprograms are “Connected” to the

Program That Calls Them
o They must usually use data from the calling
program
o Two ways that data from the calling program can
be made available in the subprogram
+ Transferred fo the subprogram via an
argument list (arguments)
Global variables are also accessible within
subprogram

Introduction (5):
@ Specific Types of Subprograms
o We have already encountered various subprograms

Event handlers — called in response to a user
interaction via the GUT (e.g. command1_Click())

+ Functions — Called whenever it is encountered
during program execution (e.g. Mid(inputTxt,
position, 1))

+ Methods — a subprogram that is associated
with a particular class/object and in fact the

method can only be called via the object (e.g.,
listBox.AddItem(myString))

Introduction (6):
a We Will Divide Subprograms Into Two
Categories

« Function Subprograms

Restricted to computing and returning a single
result only

Restricted
@ Procedure subprogram
+ More "freedom” to perform “greater”
operations
a For the remainder of the lecture, we will focus on
function subprograms

Function Subprograms (1):
@ Purpose
o Calculates a some specific single result
o Separate that calculation from the rest of the
program code
Can perform this specific calculation many
times by simply calling function within program
« Depending on how the function is defined, it
may also be called within different programs —
the built in functions of VB are an example
o Function should do nothing else except calculate a
single result — shouldn't change object properties
or modify global variables for example

CSE 1530 Winter 2006
Bill Kapralos

Function Subprograms (2):
@ Promote Modularization
e Functions allow you to separate a well defined
piece of some calculation
+ That piece of calculation becomes represented
by the name of the function
+ Think of the larger problem independently of
the piece represented by the function
s This is known as modularization
+ Divide and conquer — dividing the task into
smaller, well defined pieces or modules such
that you can focus your thinking on smaller,
more manageable tasks

Introduction to Computer Use II

Function Subprograms (3):
a The Result of a Function

a A function (subprogram) can only calculate a single
value
« The value may be an integer, real humber,

string, boolean etc.

o A function is essentially an expression and can
therefore be used in the same places that a
variable or expression might be used
+ For example, a function may be used on the

right hand side of an assignment statement —
myValue= Round()

Function Subprograms (4):
a Defining a Function
a Syntax
Private Function functionName(argument list) As resultDataType

function body (statements)
End Function

a Private, Function, As and End Function
Key words
o functionName
+ The name of the function that you provide

The name should be meaningful and represent
the calculation performed by the function

Function Subprograms (5):
a Defining a Function (cont.)

o (Argument list)
The argument list is optional however the
parenthesis are not — they must be used even
if there are no arguments

o resultDataType

+ Specifies the data type of the result returned
by the function (e.g., Integer, Single, Double...)

Function Subprograms (6):
a Defining a Function (cont.)
a Function body

+ Statements that ultimately calculate the result

+ Must assign the result to the function name —
therefore, within the function body itself, the
following statement must appear

functionName = ..

+ The function name is treated as if it were a
normal variable name

+ Function body may contain local variable
declarations and may use any global variables

Function Example (1):
a Compute a Sum
o Consider a function that will compute (and return)
the sum of the numbers in the range 1-100
+ Function name — computeSum
Arguments — none
Return data type — Integer
s Function definition
Private Function computeSum() As Integer

End Function

CSE 1530 Winter 2006
Bill Kapralos

Function Example (2):
a Compute a Sum (cont.)

s Here is the Visual Basic code for the function

Private Function computeSum() As Integer
Dim loopIndex As Integer
Dim sum As Integer
sum=0

For loopIndex = 1 To 100
sum = sum + loopIndex
Next
computeSum = sum
End Function

Introduction to Computer Use II

Function Example (3):
a Compute a Sum (cont.)

o Here is another (equivalent) version of the function
« What is the difference ?

Private Function computeSum() As Integer
Dim loopIndex As Integer
computeSum = 0

For loopIndex = 1 To 100
computeSum = computeSum + loopIndex
Next
End Function

CSE 1530 Winter 2006
Bill Kapralos

Function Example (4):
a Compute a Sum (cont.)

a Lets use the function now
« Call it in the button Click event handler

£ Form1 =)

Private Sub btnSum_Click() 5050
Dim sum As Integer

sum = computeSum() | Getsum

txtSum.Text = sum
End Sub

Output after
pressing button

