Overview (1):
- Filtering in the Frequency Domain
 - Smoothing filters
 - Sharpening filters
- Discontinuity Detection
 - Introduction to image segmentation
 - Point detection
 - Line detection
 - Edge detection

Overview (2):
- Thresholding
 - Foundation
 - Introduction
Before We Begin

Administrative Details (1):
• Lab Eight Today
 • Final lab
 • No lab report required

Administrative Details (2):
• Exam Dec. 19 2005
 • Review next week during lab period
 • I will make some comments regarding the exam
 • Exam will be similar in format to mid-term
 • No surprises!
 • Focus on material after mid-term but you are still responsible for all material
 • Still need to know spatial filtering in the frequency domain
Some Questions to Consider (1):

- Why filter in the frequency domain?
- What are the steps to filtering an image in the frequency domain?
- Why do we shift the origin of the DFT output?
- Why do we scale (with an exponential function) the output of the Fourier output?
- From the origin, what can we say about the DFT frequency?
- What is a low/high pass frequency domain filter?
- What is a "notch" filter?

Smoothing Frequency Domain Filters

Introduction (1):

- What is a Smoothing Filter (Review)
 - Edges, noise, sharp transitions in intensity levels lead to the majority of high frequency components in the frequency domain (e.g., Fourier transform)
 - Smoothing in the frequency domain is therefore achieved by (ideally) removing a specified range of high frequency components in the transform
 - Remember → ideally these components are removed but in practice, they are attenuated
 - Gaussian is one type of smoothing filter
Introduction (2):

- Mathematically
- Recall
 - \(F[u,v] \rightarrow \) Fourier transform of image to be filtered
 - \(H[u,v] \rightarrow \) filter applied to image
 - \(G[u,v] \rightarrow \) filtered image (output image)

Introduction (3):

- **Graphical Illustration of Low Pass Filtering**

 - Ideal low-pass filter
 - low pass filter displayed as an image
 - Filter radial cross-section where \(D_0 \) is radius of “circle” e.g., determines cut-off frequency

Introduction (2):

- **Graphical Illustration of Low Pass Filtering**

 - Original image

ELIC 629, Fall 2005

Bill Kapralos
Introduction to Digital Image Processing

Sharpening Frequency Domain Filters

Introduction (1):

- What is a Sharpening Filter (Review)
 - Removes (ideally) low frequency components of an image's Fourier representation (e.g., keeps frequency components above some cut-off frequency)
 - Basically, the reverse of the low pass filter and given mathematically by
 \[H_{hp}[u,v] = 1 - H_{lp}[u,v] \]
 - \(H_{hp}[u,v] \to \) high pass filter
 - \(H_{lp}[u,v] \to \) low pass filter

Introduction (1):

- Graphical Illustration of High Pass Filtering

ELIC 629, Fall 2005
Bill Kapralos
Introduction to Digital Image Processing

Introduction (2):

- **Graphical Illustration of High Pass Filtering**

- **Discontinuity Detection**

Image Segmentation (1):

- **What is Image Segmentation?**
 - Segmentation sub-divides an image into a number of regions or objects.
 - How far this sub-division is carried out depends on the task.
 - An extremely difficult yet important task.
 - Its accuracy determines the eventual success or failure of any automated analysis procedure which rely on its output.

ELIC 629, Fall 2005
Bill Kapralos
Image Segmentation (2):
- Image Segmentation Algorithms Generally Based on Two Basic Properties of Intensity
 - Discontinuity
 - Partition image based on abrupt changes in intensity (e.g., edges where there is a large change in intensity between adjacent pixels)
 - Similarity
 - Partition image into regions that are similar based on some pre-defined criteria (e.g., intensity of pixels within a certain range)

Introduction (1):
- Will Focus on Three Types of Discontinuities
 1. Points
 2. Lines
 3. Edges
- Regardless the type of discontinuity, most common approach to locating them is to "filter" the image with a 3 x 3 mask (e.g., convolution)
- Mask coefficients are chosen depending on the type of discontinuity being searched for

Introduction (2):
- Recall Spatial Domain Filtering with Mask
 - Sum of products of coefficients with the gray levels in image encompassed by the mask
 \[R = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \ldots + w(0,0)f(x,y) + \ldots + w(1,1)f(x+1,y+1) \]
 - Example of a 3x3 template with its coefficients

ELIC 629, Fall 2005
Bill Kapralos
Point Detection (1):

- **In Principle, Straightforward**
 - Using the following mask, a point is detected at the location at which the mask is centered on if

\[|R| \geq T \]

\(R \rightarrow \) output of filtering operation (e.g., sum of filter coefficients multiplied by corresponding image intensities)

\(T \rightarrow \) threshold (an intensity value, recall your labs)

<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Point Detection (2):

- **Basic Idea**
 - Isolated point (a point whose gray level is much different from its background) will be different from its surroundings and will be detected by the mask used
 - Examine mask coefficients
 - Sum of coefficients equals 0 → mask response will be zero in areas of constant gray level

Point Detection (1):

- **Graphical Example**

- Original image → X-ray image of turbine blade with a porosity

- Result of running mask over entire image

- Result after thresholding → threshold set to 90% of highest pixel value in image

Detected point

Porosity with single black pixel embedded within it
Line Detection (1):

- More Difficult Than Point Detection
 - Lines can be oriented in any manner (e.g., horizontally, vertically, ±/45°, etc.)
 - Different mask to detect each line orientation

```
  -1  -2  -1
   2   2   2
  -1   -2  -1
```

Horizontal

```
  -1  -1  -1
   5   5   5
  -1  -1  -1
```

+45°

```
  -1  2  -1
   2  -1  -1
  -1  2  -1
```

Vertical

```
  -1   2   -1
   2   -1   -1
  -1   2   -1
```

−45°

Line Detection (2):

- Notes Regarding the Line Detection Masks
 - Typically these masks detect lines 1 pixel thick
 - Preferred direction of each mask is weighted with a larger coefficient than the other possible directions (e.g., 2 instead of -1)
 - Coefficients sum to zero
 - Response will be equal to zero in areas of constant gray level

Line Detection (3):

- Line Detection Graphical Example

- Original image
- Processing image with -45° line detector mask
- Result of thresholding the image after applying filter
Edge Detection (1):

- **Basic Formulation**
 - What is an edge (review) → set of connected pixels that lie on a boundary between two regions
 - Different from a boundary → boundary is more of a “global” concept whereas edge is a more of a “local” concept
 - Modeling of an ideal edge
 - A set of connected pixels, each of which is located at an orthogonal step transition in gray level

Edge Detection (2):

- **Basic Formulation (cont...)**
 - Modeling of ideal edge – graphical illustration

Edge Detection (3):

- **In Practice, Ideal Edges Do Not Exist!**
 - Sampling and the fact that sampling acquisition equipment etc. is far from perfect leads to edges that are blurred
 - Changing illumination (lighting conditions) will cause changes to edges & all parts of an image in general
 - Changes in lighting is actually a HUGE problem for vision/image processing tasks → many algorithms will not generalize across different lighting conditions
 - Color constancy → a big field in computer vision but still an un-solved problem!
Edge Detection (4):

- In Practice, Ideal Edges Don’t Exist! (cont. . .)
 - In reality, edges have a more “ramp-like” profile
 - The slope of the ramp is inversely proportional to the degree of blurring in the edge

Model of ramp digital edge

- Gray-level profile of horizontal line through image

Edge Detection (5):

- In Practice, Ideal Edges Don’t Exist! (cont. . .)
 - Edge is no longer a one-pixel thick path
 - An edge point is now any point contained in the ramp and an edge would be a set of such points which are connected
 - Thickness of edge is given length of ramp which is determined by the slope which itself is determined by the amount of blurring
 - Blurred edges are typically thicker e.g., the greater the blurring → the thicker the edge

Edge Detection (6):

- Detecting Edges
 - Recall → edges are detected using first and second order digital derivatives (gradients)
Edge Detection (7):

- **Detecting Edges (cont...)**
 - Remember
 - First derivative \rightarrow positive at points of transition into and out of ramp (moving from left to right) & zero in constant gray-level areas
 - Second derivative \rightarrow positive at transition associated with the "dark" side of edge, negative at light side of edge and zero along ramp & in areas of constant gray level

Edge Detection (8):

- **Detecting Edges (cont...)**
 - Some conclusions regarding derivatives & edges
 - Magnitude of first order derivative can be used to detect presence of edge at point
 - Sign of second order derivative can be used to determine whether edge pixel itself lies on dark or bright side of edge
 - Second order derivative produces two values for every edge & therefore zero-crossing
 - Zero-crossing \rightarrow imaginary straight line drawn from positive to negative value would cross zero near midpoint of the edge

Edge Detection (9):

- **Edge Detection Example**
 - Entire transition from left to right is single edge

 ![Image](image.png)

ELIC 629, Fall 2005
Bill Kapralos
Edge Detection (10):

Edge Detection Example

- Conclusions we can draw from previous examples
 - To be classified as edge point, gray-level transition must be significantly stronger than background
 - Threshold used to determine whether it is different from background → e.g., will be classified as edge only if derivative is greater than some but thresholds have their own problems!
 - The set of all these points greater than the threshold and connected comprise the edge

Thresholding

Introduction (1):

- **Central to Image Processing/Computer Vision**
 - Essentially, thresholding basically involves performing a check at each pixel location
 - This should be familiar from your labs!

 For each pixel (x,y) in image
 1. Obtain pixel intensity p_i
 2. Compare p_i with pre-defined threshold value T
 - if $p_i \geq T$ then $p_i = 1$ (p is an object point)
 - if $p_i < T$ then $p_i = 0$ (p is background point)
Introduction (2):
- **Graphical Example**
 - Histogram of image with light object and dark background
 - After performing thresholding of image with threshold T, pixels corresponding to object will be highlighted (e.g., set to 1) while background pixels will be set to zero.

Introduction (3):
- **Multi-Level Thresholding**
 - Can be used to locate (detect) multiple objects where each object is within some range of intensities
 - Multiple thresholds and therefore multiple checks per pixel
 - For example, two objects, two threshold T_1, T_2
 - Pixel belongs to one object if $T_1 < f(x,y) \leq T_2$
 - Pixel belongs to other object if $f(x,y) > T_2$
 - Pixel belongs to background if $f(x,y) \leq T_1$

Introduction (4):
- **Graphical Example**
 - Multi-level thresholding
 - Multi-level thresholding
 - Object 1
 - Object 2
 - Background
 - Threshold 1
 - Threshold 2