OpenGl & Glut
Part |: Introduction

COSC 4431/5331
Computer Graphics

Bill Kapralos
Tuesday January 20, 2004

Essential Reference:

@ OpenGL Programming
Guide (Third Edition):
o M. Woo, J. Neider,
T. Davis & D. Shreiner

o Extremely useful when
developing OpenGL
applications

OpenGL *

Programming Guide
Fourth Fabition

i Grabde bes Lermbng

s Internet version - link
from course web site

+ Some images in this
presentation were
taken from web site

Overview:

@ Introduction to OpenGL
¢ What is OpenGL ?
° Open6L command syntax
o OpenGL as a state machine
o OpenGL primitives

@ Introduction to GLUT
o What is GLUT ?
o Initializing & creating a window
o Handling window events
o Sample GLUT code

Introduction to
OpenGL

What is Open6GL? (1):
@ Open6l is an APT
o Software interface to the graphics hardware
o Most widely used in the graphics industry
@ Supports both 2D and 3D
+ Can be used to produce interactive 3D applications
e ~250 commands to specify objects and operations

@ Main Purpose of OpenGL — Rendering

o Conversion of object descriptions (geometric or
mathematical) into images

o Does not handle windowing or input tasks

What is Open6L? (2):

o Independent of Windowing System & OS
@ Runs on Unix, Linux, Windows, Mac, 0S/2 etc.
o C/C++, Java, Fortran, Python, Perl, Ada
o Scalable, portable, reliable, easy to use
« Plenty of documentation freely available
o Independent of Display Device
o Monitor, projector, HMD etc.

What is Open6L ? (3):
@ OpenGL can only Render Primitives
< Low level commands only
+ High-quality color images composed of geometric
and image primitives only
+No commands to describe 3D objects
@ Geometric Primitives:
o Points, lines and polygons
@ Image Primitives:

< Bitmaps, images

What is Open6GL ? (4):
o Example of OpenGL Rendered Scene

What is Open6L ? (5):
a Another Example of OpenGL Rendered Scene

What is OpenGL? (6):
@ Libraries Built on top of OpenGL
@ Use OpenGL primitives to allow for high level
commands describing complicated shapes and 3D
objects/animations
o OpenGL Utility Library (6LU)
« Standard part of Open6L (~50 commands)
+ Set up matrices for viewing transformations,
polygon tessellation etc...
@ Fahrenheit Scene Graph (FSG)

- Objects and methods for creating interactive 3D
graphics applications

What is Open6GL? (7):
a Libraries Built on top of OpenGL (cont..)
o OpenGL Extensions to allow display on specific
windowing systems:

« 6LX — X-Windows
+« WGL - MS Windows 95/98/NT
«AGL — Apple

o OpenGL Utility Toolkit (6LUT) APT
« Interface to window system and input devices
« Device independent unlike APIs listed above!
« Most commonly used and also used in this coursel!

Open6GL Syntax (1):
e Open6L Argument Data Types:

Corresponding

Suffix C Type OpenGL Type

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long Glint, GLsizei

f 32-bit floating point float GLfloat, GLclampf
d 64-bit floating point double GLdouble, GLclampd
ub 8-bit unsigned integer unsigned char GLubyte, GLboolean
us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer uﬂ’::é‘; e;ilnot n(:gr GngIIljl;i(t;ftel:um’

Open6L Syntax (2):

@ Functions:
o Use the prefix "gl"
e Each word after gl begins with capital letter
s Example: glClearColor3f(), glBegin(), glEnd()

e Constants:
s Upper-case letters only
o Begin with "6L_"
o Multiple words separated by "_
o Example: 6L_COLOR_BUFFER_BIT, GL_DEPTH

W

Open6GL Syntax (3):

@ Functions May Contain Suffix as Well:
o Denotes the number of and type of arguments
< Typically of the form: "xt"
«"x" - number of arguments
«"t" — argument type
o Allows for “"same” function name to be used with
different arguments

< Example: glColor3f(), glColor3i(), glColor2f(),
glColor2i()

Open6L Function Syntax:

Basic

Command
Prefix
“‘j Arguments
l g

glvertex3fv(x, y, z)

B

Number of Data Type Vector

Co ts

'P

b - byte Omit “v” for
2 - (x,y) ub - unsigned byte Scalar form
3 - (x,y,2) short
4 - (x,y,z,w) unsigned short glvertex2f(x, y)

unsigned int
float
double

i - int

OpenGL as a State Machine (1):

@ Various OpenGL Rendering Attributes are
Treated as State Variables:
@ Once set to specific state (value), OpenGL retains
the state until state (value) is changed again

s Each state variable has a default value - no need to
explicitly set state unless needed

o Some states have two values: activated or de-
activated

@ Example state variables:

« Current color, viewing & projection transformation,
polygon drawing modes, lighting etc...

OpenGL as a State Machine (2):

a Most Two-Value States are Initially De-
activated

o May be costly to operate so activate only when
needed - to turn state ON/OFF use:

glEnable (GLenum cap) ;
glDisable (GLenum cap) ;
o Example states which can be activated/de-activated
+6L_LIGHTING — lighting
+GL_DEPTH_TEST — controls depth comparisons
«GL_LINE_STIPPLE — patterned lines
+GL_BLEND — controls blending of RGBA values

17

OpenGL as a State Machine (3):
o State Querying Functions Available

a Find current value of a state

glGetBooleanv (GLenum pname, GLboolean *params) ;
glGetIntegerv (GLenum pname, GLint *params);
glGetFloatv (GLenum pname, GLfloat *params);
glGetDoublev (GLenum pname, GLdouble *params);

glGetPointerv (GLenum pname, GLvoid **params);

o pname — state variable to return value of

o *params — pointer to array where return data
placed

glGetFloatv (GL_CURRENT_ COLOR, curColorValue);

OpenGL Rendering Pipeline (1):

@ Series of Processing Stages
o Not a "strict rule” but good predictor on what
OpenGL will do
e Geomeftric primitives:
- Evaluators and per vertex operations
o Pixel data (pixels, images, bit-maps):
+ Follow different path initially

o Both data types undergo same “final steps” before
final pixel data is written into the framebuffer
= Rasterization and per-fragment operations

OpenGL Rendering Pipeline (2):

@ Graphical Illustration:

Vertex Per-yverex
data operations

30| Evaluate rsF-

and primitive
assembly

Display
ligt

‘FlasterizationF»

P er-fragment
operations

Open6L Primitives (1):

@ Points and Line Segments

GL_POINTS
PO

° P4
P1 (*]
e P o
°

GL_LINE_STRIP

Pl 6L_LINES
PO \.
/’ P2
P1
P3
P3 ./'

GL_LINE_LOOP
PO

P3
P4 P4
P1 P1

[P ixel Texture L
,—-|opgration5 4;"‘ 2. ssembly Framebuifer
Pixel N] ! [

20
OpenGL Primitives (2):
6L_QUADS
@ Polygons oo o N
6L_POLYGON
PO P1 P1
P3
P3 by P2
P Pe 6L_TRIANGLE_STRIP
6L_TRIANGLES PO P2 Pa P6
PO
v
P2 p1 P1 P3 P5

N points — (N-2) triangles

OpenGL Primitives (3):
o < NN

GL_POINTS GL_LINE_STRIP

a
1 2 1 2 0 5
o 2
a 0l-2 a 2 -
GL_LINE_LOOP GL_POLYGON GL_QUADS
& a
' 2&
3 7
a 1 a
GL QuaAD_STHIP GL_TRIANGLES
1

m <7
0 1@

5
2 A 0

GL_TRIANGLE _STRIP GL_TRIANGLE_FAN

GL_LINES

L/

OpenGL Primitives (4):
o Specifying Primitives/Geometry

o All primitives (geometric objects) are specified by a

list of vertices between glBegin() and glEnd():
o Usage:
1. Begin with: glBegin(primitive) where primitive
denotes the primitive type to draw (e.g. points,
lines etc...)

2. List vertices of primitive type
3. End with: glEnd()

OpenGL Primitives (5):
@ A simple example: Rendering a triangle

glBegin (GL_TRIANGLE) ;
glvertex3f (x1, yl, zl);
glvVertex3f (x2, y2, z2);
glvertex3f (x3, y3, z3);
glEnd () ;

@ A simple example: Rendering a polygon

glBegin (GL_POLYGON) ;
glVertex3f (x1, yl, zl);
glvertex3f (x2, y2, z2);
glvertex3f (x3, y3, z3);
glVertex3f (x4, vy4, z4);
glEnd () ;

OpenGL Primitives (6):
o Example: Rendering a Red Triangle

glBegin (GL_TRIANGLE) ;
glColor3f (1.0, 0.0, 0.0);
glvertex3f (x1l, yl, zl);
glvertex3f (x2, y2, z2);
glvertex3f (x3, y3, z3);
glEnd () ;

@ Example: Rendering Different Colored Points

glBegin (GL_POINTS) ;
glColor3f (1.0, 0.0, 0.0);
glvertex3f (x1l, yl, zl);
glColor3f(0.0, 1.0, 0.0);
glvertex3f (x2, y2, z2);
glColor3£(0.0, 0.0, 1.0);
glvertex3f (x3, y3, z3);

glEnd () ;

OpenGL Primitives (7):
@ Restrictions Regarding glBegin()/glEnd()

s Restricted set of Open6L commands can be placed
between glBegin/glEnd

o Can specify vertices and vertex specific data for
each vertex only (e.g. color, normal vector, texture
coordinates etc.)

o Any other programming language constructs are also
allowed (e.g. loops, if/else etc.)

OpenGL Primitives (8):
o Polygons and OpenGL
o Supports rendering of convex polygons only!
« For any two points in interior, line joining them is
also in the interior
+ No holes in polygons!
o Polygons must be simple
- Edges of polygon cannot intersect

IO XEQ

valid Invalld
28

OpenGL Primitives (9):
@ Polygons and OpenGL (cont...)
o But many real-world surfaces consist of non-simple
polygons, non-convex polygons or polygons with holes
« Such polygons can be formed from unions of
simple convex polygons
o Routines to build more complex objects are provided
in the GLU library

« Tessellation: Take complex descriptions and
break them down into groups of the simpler
OpenGL polygons that can be rendered!

OpenGL Primitives (10):
o Tessellation Example
@ Any smooth curved line or surface can be
approximatedm by short line segments or small
polygonal regions.
o Arbitrarily set accuracy of approximation
- Decrease length of each segment — increase

accuracy
s Ty
! !
\ 1 A

* ‘s .

OpenGL Primitives (11):
a Every Polygon Has Two Sides: Front & Back

o Rendered differently depending which side is facing
viewer

o Allows for cut-away views of objects where there is
difference between parts inside and those outside

o By default, both front & back drawn same way
« Change using:

void glPolygonMode (GLenum face, GL_enum mode) ;

« face —> 6L_FRONT_AND_BACK, 6L_FRONT or 6L_BACK

« mode — GL_POINT, 6L_LINE_ or 6L_FILL (indicates if
polygon is drawn as points, outline or filled)

OpenGL Primitives (12):
@ Objects Drawn Independent of Color

o Object color is a state variable
¢ Objects rendered using current color

@ Two Modes to Store Bitplanes

o Bitplane — pixel colors stored in hardware
@ RGBA Color Mode
» Store red, green, blue and alpha values directly
in bitplane
o TIndex Color Mode

- Store single index that references color look-up
table

32

OpenGL Primitives (13):
a RGBA Color Mode
s Mixture of red, green and blue colors
o Each r,g,b value is given value between 0.0 to 1.0

+ 0.0 > don't use any of specific component
« 1.0 - use the maximum of specific component

« In Open6l use glColor*() command - for example:

void glColor3f(r, g, b);

« To set the current color to red:

void glColor3f (1,0, 0.0, 0.0);

OpenGL Primitives (14):
@ RGBA Color Mode (cont...)

glColor3f (0.0, 0.0, 0.0); /*black*/
glColor3f (1.0, 0.0, 0.0); /*red*/
glColor3f (0.0, 1.0, 0.0); /*green*/
glColor3f (0.0, 0.0, 1.0); /*blue*/
glColor3f (1.0, 1.0, 0.0); /*yellow*/
glColor3f (0.0, 1.0, 1.0); /*cyan*/
glColor3f (1.0, 0.0, 1.0); /*magenta*/
glColor3f (1.0, 1.0, 1.0); /*white*/

OpenGL Primitives (15):
a RGB Color Cube
s r,gb colors define a

cube of possible
color mixtures

OpenGL Primitives (16):
e Clearing the Display Window
o Specify the background color in RGBA format
« RGB — red, green, blue value (0.0 - 1.0)
+ A - alpha - transparency 0.0 - 1.0 (0.0 is opaque)
+ Background color is a state variable
void glClearColor(r, g, b, a);

void glClear (GL_COLOR_BUFFER_BIT) ;

o Color bitplane is one of several buffers maintained
by Open6L:
+ Depth buffer, accumulation buffer, stencil
buffer - use glClear() to clear these too

Introduction to the
Open6GL Utility Toolkit
(6LUT)

What is 6LUT? (1):

@ Open6L Utility Toolkit
o Not officially part of OpenGL
o Interface to window system and input devices
& Written by Mark J. Kilgard initially for X-Windows
« Ported to Microsoft by Nate Robins
o Purpose:

+ Enable construction of OpenGL applications
independent of any window system

« Can write applications without knowing about X-
Windows, Microsoft's or Apple's window system

What is 6LUT? (2):
@ Event Based
¢ Open rendering window
o Register callback functions for any specific window or
input events of interest
« Mouse, keyboard, window re-sizing, etc.
o Create a main loop which never exits and continuously:
+ Scans for any of the registered events
« When registered event detected, appropriate
callback functions are executed
« After completing callback function, back to main
loop

Initializing & Creating a Window:

void glutInit(int argc, char *argv[]);
o Initializes the GLUT library
@ Processes window system specific command line arguments

void glutInitDisplayMode (int mode) ;
a sets display mode (e.g. single buffer with RGB) to mode

Void glutInitWindowSize (int w, int h);
o sets window size to width = wand height = A4

void glutInitPosition(int x, int y);
a sets upper left corner of window to position x, y

void glutCreateWindow (char *name);
o open window with title name

Handling Window & Input Events (1):

void glutDisplayFunc(void (* (func) (void))

Specifies function to be called when window needs to be re-drawn (e.g.
when window is initially opened, window is popped or damaged etc.)

Can also be explicitly called using glutPostRedisplay()

©

©

void glutreshapeFunc((* (func) (int width, int height));
Specifies function to be called when window is re-sized
Two arguments specify new window dimensions

void glutKeyboardFunc(* (func) (int key, int x, int y);
Specifies function to be called when a key which generates an ASCIT
character is pressed.

key is the ASCIT value of the pressed key

x,y are the coordinates of mouse in the window when key was pressed

©

©

©

Handling Window & Input Events (2):

void glutMouseFunc(void (*(func) (button, state, x, y));
o Specifies function to be called when mouse botton is pressed or

released.

button: GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON or

GLUT_MIDDLE_BUTTON

state: GLUT_UP or GLUT_DOWN

x,y are the coordinates of the mouse when event occurred

©

©

void glutMotionFunc((* (func) (int x, int y));

Specifies function to be called when mouse pointer moves within the
window while one or more mouse buttons are pressed

x,y are coordinates of mouse when event occurred

©

void glutPostRedisplay (void) ;
Calls glutPostRedisplay() in order to re-draw window

Handling Window and Event Functions (3):
¢ Display Callback Function Example:

< All drawing is done in this function

o Define Function:

void myDisplayFunction (void) {
// Insert any “drawing” specific commands here
// e.g. viewing/model transformations
glBegin (GL_POLYGON) ;
glvertex3fv(xl, yl, zl);
glvertex3fv (x2, y2, z2);
glvertex3fv (x3, y3, z3);

gléné(i;

e Register callback:
glutDisplayFunc (myDisplayFunction) ;

43

Handling Window and Event Functions (4):
@ Keyboard Callback Function Example:

o Define Function:

void myKeyboardFunction(char key, int x, int y)
switch(key) {
case ‘q’:
exit(1);
break;
case ‘r’:
rotateObject = GL_TRUE;
break;
}
}

o Register callback:

glutKeyboardFunc (myKeyboardFunction) ;

Drawing 3D Objects:

e Several Drawing Routines for 3D Objects
s All graphics rendered in immediate mode (e.g. drawn
immediately rather than at a latter time)
o Two "flavors” for each 3D object:
1. Wire-frame — no surface normals
2. Solid — surface normals included - for lighting
o Example functions for 3D objects:
glutWireCube (GLdouble size);
glutSolidCube (GLdouble size);

glutWireTeapot (GLdouble size);
glutSolidTeapot (GLdouble size);

45

Sample GLUT Code (1):

// Initialization of GLUT, display mode and window
glutInit (&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize (640, 480);
glutInitWindowPosition (100, 150);

glutCreateWindow (“Test”) ;

// Register any callback functions
glutDisplayFunc (myDisplayFunction);
glutReshapeFunc (myReshapeFunction) ;
glutMouseFunc (myMouseFunction) ;
glutKeyboardFunc (myKeyboardFunction) ;

// Enter the GLUT main loop and wait for any events
glutMainLoop ();

Getting Started (1):
a Microsoft Windows (XP) & Visual Studio (C++)

o OpenGL included in newer versions of Windows OS
o If using MS Visual Studio GLUT also installed
o Compiling and linking - After creating project
+ From menu bar, go to
"Project -> Settings -> ... Link"
« Add the following string to the "Objects/Library
Modules” string
“opengl32.1ib glu32.1lib glut32.1ib”
« Build & execute program

47

Getting Started (2):

e Include Libraries
o For all OpenGL applications, include gl.h in every file

@ Almost all OpenGL applications use GLU, so include
glu.h as well

o If using Glut, you also need glut.h
@ OpenGL source file typically begins with

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
o But glut.h includes the gl.h and glu.h so reall only
glut.h is needed!

Getting Started (3):
o Setting Up Project in Visual Studio/C++

1. Load Visual Studio/C++

2. File->New a dialog box will appear - choose "Win 32 Console
Application", give the project a name and press "OK"

3. Another dialog box will then appear: choose "A Simple
Application" and click "Finish"

4. Your new project workspace will now be available and on the
screen - add the three libraries as previously described

5. All necessary files etfc. will be generated in addition to the file
containing "main” method - this is entry point

49

