
Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

COSC 4431/5331
Computer Graphics

Bill Kapralos

Tuesday January 20, 2004

2

Essential Reference:
OpenGL Programming
Guide (Third Edition):

M. Woo, J. Neider,
T. Davis & D. Shreiner
Extremely useful when
developing OpenGL
applications
Internet version – link
from course web site

Some images in this
presentation were
taken from web site

3

Overview:
Introduction to OpenGL

What is OpenGL ?
OpenGL command syntax
OpenGL as a state machine
OpenGL primitives

Introduction to GLUT
What is GLUT ?
Initializing & creating a window
Handling window events
Sample GLUT code

4

Introduction to
OpenGL

5

What is OpenGL? (1):
OpenGL is an API

Software interface to the graphics hardware
Most widely used in the graphics industry
Supports both 2D and 3D

Can be used to produce interactive 3D applications
~250 commands to specify objects and operations

Main Purpose of OpenGL → Rendering
Conversion of object descriptions (geometric or
mathematical) into images
Does not handle windowing or input tasks

6

What is OpenGL? (2):
Independent of Windowing System & OS

Runs on Unix, Linux, Windows, Mac, OS/2 etc.

C/C++, Java, Fortran, Python, Perl, Ada

Scalable, portable, reliable, easy to use
Plenty of documentation freely available

Independent of Display Device
Monitor, projector, HMD etc.

Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

7

What is OpenGL ? (3):
OpenGL can only Render Primitives

Low level commands only
High-quality color images composed of geometric
and image primitives only
No commands to describe 3D objects

Geometric Primitives:
Points, lines and polygons

Image Primitives:
Bitmaps, images

8

What is OpenGL ? (4):
Example of OpenGL Rendered Scene

9

What is OpenGL ? (5):
Another Example of OpenGL Rendered Scene

10

What is OpenGL? (6):
Libraries Built on top of OpenGL

Use OpenGL primitives to allow for high level
commands describing complicated shapes and 3D
objects/animations
OpenGL Utility Library (GLU)

Standard part of OpenGL (~50 commands)
Set up matrices for viewing transformations,
polygon tessellation etc…

Fahrenheit Scene Graph (FSG)
Objects and methods for creating interactive 3D
graphics applications

11

What is OpenGL? (7):
Libraries Built on top of OpenGL (cont…)

OpenGL Extensions to allow display on specific
windowing systems:

GLX → X-Windows
WGL → MS Windows 95/98/NT
AGL → Apple

OpenGL Utility Toolkit (GLUT) API
Interface to window system and input devices
Device independent unlike APIs listed above!
Most commonly used and also used in this course!

12

OpenGL Syntax (1):
OpenGL Argument Data Types:

GLuint, GLenum,
GLbitfield

unsigned int or
unsigned long32-bit unsigned integerui

GLushortunsigned short16-bit unsigned integerus

GLubyte, GLbooleanunsigned char8-bit unsigned integerub

GLdouble, GLclampddouble64-bit floating pointd

GLfloat, GLclampffloat32-bit floating pointf

Glint, GLsizeiint or long32-bit integeri

GLshortshort16-bit integers

GLbytesigned char8-bit integerb

OpenGL TypeCorresponding
C Type

Data
TypeSuffix

Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

13

OpenGL Syntax (2):
Functions:

Use the prefix “gl”
Each word after gl begins with capital letter
Example: glClearColor3f(), glBegin(), glEnd()

Constants:
Upper-case letters only
Begin with “GL_”
Multiple words separated by “_”
Example: GL_COLOR_BUFFER_BIT, GL_DEPTH

14

OpenGL Syntax (3):

Functions May Contain Suffix as Well:
Denotes the number of and type of arguments

Typically of the form: “xt”
“x” → number of arguments
“t” → argument type

Allows for “same” function name to be used with
different arguments

Example: glColor3f(), glColor3i(), glColor2f(),
glColor2i()

15

OpenGL Function Syntax:

2 – (x,y)
3 – (x,y,z)
4 – (x,y,z,w)

b – byte
ub – unsigned byte
s – short
us – unsigned short
i – int
ui – unsigned int
f – float
d - double

Omit “v” for
Scalar form

glVertex2f(x, y)

Number of
Components

Data Type Vector

glVertex3fv(x, y, z)

Prefix

Basic
Command

Arguments

16

OpenGL as a State Machine (1):
Various OpenGL Rendering Attributes are
Treated as State Variables:

Once set to specific state (value), OpenGL retains
the state until state (value) is changed again
Each state variable has a default value – no need to
explicitly set state unless needed
Some states have two values: activated or de-
activated
Example state variables:

Current color, viewing & projection transformation,
polygon drawing modes, lighting etc…

17

OpenGL as a State Machine (2):
Most Two-Value States are Initially De-
activated

May be costly to operate so activate only when
needed - to turn state ON/OFF use:

glEnable(GLenum cap);
glDisable(GLenum cap);

Example states which can be activated/de-activated
GL_LIGHTING → lighting
GL_DEPTH_TEST → controls depth comparisons
GL_LINE_STIPPLE → patterned lines
GL_BLEND → controls blending of RGBA values

18

OpenGL as a State Machine (3):
State Querying Functions Available

Find current value of a state

glGetBooleanv(GLenum pname, GLboolean *params);

glGetIntegerv(GLenum pname, GLint *params);

glGetFloatv(GLenum pname, GLfloat *params);

glGetDoublev(GLenum pname, GLdouble *params);

glGetPointerv(GLenum pname, GLvoid **params);

pname → state variable to return value of
*params → pointer to array where return data
placed

glGetFloatv(GL_CURRENT_COLOR, curColorValue);

Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

19

OpenGL Rendering Pipeline (1):
Series of Processing Stages

Not a “strict rule” but good predictor on what
OpenGL will do

Geometric primitives:
Evaluators and per vertex operations

Pixel data (pixels, images, bit-maps):
Follow different path initially

Both data types undergo same “final steps” before
final pixel data is written into the framebuffer

Rasterization and per-fragment operations
20

OpenGL Rendering Pipeline (2):
Graphical Illustration:

21

OpenGL Primitives (1):
Points and Line Segments

P0

P1
P2 P3

P4

GL_POINTS
GL_LINES

GL_LINE_STRIP
GL_LINE_LOOP

P0

P1

P1

P2

P3

P3

P0

P1

P2

P4

P3 P0

P1

P2

P4

P3

22

OpenGL Primitives (2):
Polygons

GL_POLYGON
P0 P1

P2P3

GL_QUADS

P0 P1

P3 P2

P0

P1
P3

P2

GL_TRIANGLES

P0

P1P2

P0

P1

P2

P3

P4

P5

P6

N points → (N-2) triangles

GL_TRIANGLE_STRIP

23

OpenGL Primitives (3):

24

OpenGL Primitives (4):
Specifying Primitives/Geometry

All primitives (geometric objects) are specified by a
list of vertices between glBegin() and glEnd():

Usage:
1. Begin with: glBegin(primitive) where primitive

denotes the primitive type to draw (e.g. points,
lines etc…)

2. List vertices of primitive type
3. End with: glEnd()

Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

25

OpenGL Primitives (5):
A simple example: Rendering a triangle

glBegin(GL_TRIANGLE);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);

glEnd();

A simple example: Rendering a polygon
glBegin(GL_POLYGON);

glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);
glVertex3f(x4, y4, z4);

glEnd();

26

OpenGL Primitives (6):
Example: Rendering a Red Triangle

glBegin(GL_TRIANGLE);
glColor3f(1.0, 0.0, 0.0);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);

glEnd();

Example: Rendering Different Colored Points
glBegin(GL_POINTS);

glColor3f(1.0, 0.0, 0.0);
glVertex3f(x1, y1, z1);
glColor3f(0.0, 1.0, 0.0);
glVertex3f(x2, y2, z2);
glColor3f(0.0, 0.0, 1.0);
glVertex3f(x3, y3, z3);

glEnd();

27

OpenGL Primitives (7):
Restrictions Regarding glBegin()/glEnd()

Restricted set of OpenGL commands can be placed
between glBegin/glEnd

Can specify vertices and vertex specific data for
each vertex only (e.g. color, normal vector, texture
coordinates etc.)

Any other programming language constructs are also
allowed (e.g. loops, if/else etc.)

28

OpenGL Primitives (8):
Polygons and OpenGL

Supports rendering of convex polygons only!
For any two points in interior, line joining them is
also in the interior
No holes in polygons!

Polygons must be simple
Edges of polygon cannot intersect

29

OpenGL Primitives (9):
Polygons and OpenGL (cont…)

But many real-world surfaces consist of non-simple
polygons, non-convex polygons or polygons with holes

Such polygons can be formed from unions of
simple convex polygons

Routines to build more complex objects are provided
in the GLU library

Tessellation: Take complex descriptions and
break them down into groups of the simpler
OpenGL polygons that can be rendered!

30

OpenGL Primitives (10):
Tessellation Example

Any smooth curved line or surface can be
approximatedm by short line segments or small
polygonal regions.
Arbitrarily set accuracy of approximation

Decrease length of each segment → increase
accuracy

Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

31

OpenGL Primitives (11):
Every Polygon Has Two Sides: Front & Back

Rendered differently depending which side is facing
viewer
Allows for cut-away views of objects where there is
difference between parts inside and those outside
By default, both front & back drawn same way

Change using:
void glPolygonMode(GLenum face, GL_enum mode);

face → GL_FRONT_AND_BACK, GL_FRONT or GL_BACK

mode → GL_POINT, GL_LINE_ or GL_FILL (indicates if
polygon is drawn as points, outline or filled)

32

OpenGL Primitives (12):
Objects Drawn Independent of Color

Object color is a state variable
Objects rendered using current color

Two Modes to Store Bitplanes
Bitplane → pixel colors stored in hardware
RGBA Color Mode

Store red, green, blue and alpha values directly
in bitplane

Index Color Mode
Store single index that references color look-up
table

33

OpenGL Primitives (13):
RGBA Color Mode

Mixture of red, green and blue colors

Each r,g,b value is given value between 0.0 to 1.0
0.0 → don’t use any of specific component
1.0 → use the maximum of specific component
In OpenGL use glColor*() command – for example:

void glColor3f(r, g, b);

To set the current color to red:

void glColor3f(1,0, 0.0, 0.0);

34

OpenGL Primitives (14):
RGBA Color Mode (cont…)

glColor3f(0.0, 0.0, 0.0); /*black*/

glColor3f(1.0, 0.0, 0.0); /*red*/

glColor3f(0.0, 1.0, 0.0); /*green*/

glColor3f(0.0, 0.0, 1.0); /*blue*/

glColor3f(1.0, 1.0, 0.0); /*yellow*/

glColor3f(0.0, 1.0, 1.0); /*cyan*/

glColor3f(1.0, 0.0, 1.0); /*magenta*/

glColor3f(1.0, 1.0, 1.0); /*white*/

35

OpenGL Primitives (15):
RGB Color Cube

r,g,b colors define a
cube of possible
color mixtures

36

OpenGL Primitives (16):
Clearing the Display Window

Specify the background color in RGBA format
RGB → red, green, blue value (0.0 – 1.0)
A → alpha – transparency 0.0 – 1.0 (0.0 is opaque)
Background color is a state variable
void glClearColor(r, g, b, a);

void glClear(GL_COLOR_BUFFER_BIT);

Color bitplane is one of several buffers maintained
by OpenGL:

Depth buffer, accumulation buffer, stencil
buffer – use glClear() to clear these too

Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

37

Introduction to the
OpenGL Utility Toolkit

(GLUT)

38

What is GLUT? (1):
OpenGL Utility Toolkit

Not officially part of OpenGL
Interface to window system and input devices
Written by Mark J. Kilgard initially for X-Windows

Ported to Microsoft by Nate Robins
Purpose:

Enable construction of OpenGL applications
independent of any window system
Can write applications without knowing about X-
Windows, Microsoft's or Apple’s window system

39

What is GLUT? (2):
Event Based

Open rendering window
Register callback functions for any specific window or
input events of interest

Mouse, keyboard, window re-sizing, etc.
Create a main loop which never exits and continuously:

Scans for any of the registered events
When registered event detected, appropriate
callback functions are executed
After completing callback function, back to main
loop

40

Initializing & Creating a Window:
void glutInit(int argc, char *argv[]);

Initializes the GLUT library
Processes window system specific command line arguments

void glutInitDisplayMode(int mode);
sets display mode (e.g. single buffer with RGB) to mode

Void glutInitWindowSize(int w, int h);
sets window size to width = w and height = h

void glutInitPosition(int x, int y);

sets upper left corner of window to position x, y

void glutCreateWindow(char *name);
open window with title name

41

Handling Window & Input Events (1):
void glutDisplayFunc(void (* (func)(void));

Specifies function to be called when window needs to be re-drawn (e.g.
when window is initially opened, window is popped or damaged etc.)
Can also be explicitly called using glutPostRedisplay()

void glutreshapeFunc((* (func)(int width, int height));
Specifies function to be called when window is re-sized
Two arguments specify new window dimensions

void glutKeyboardFunc(* (func)(int key, int x, int y);
Specifies function to be called when a key which generates an ASCII
character is pressed.
key is the ASCII value of the pressed key
x,y are the coordinates of mouse in the window when key was pressed

42

Handling Window & Input Events (2):
void glutMouseFunc(void (*(func)(button, state, x, y));

Specifies function to be called when mouse botton is pressed or
released.
button: GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON or
GLUT_MIDDLE_BUTTON
state: GLUT_UP or GLUT_DOWN
x,y are the coordinates of the mouse when event occurred

void glutMotionFunc((* (func)(int x, int y));
Specifies function to be called when mouse pointer moves within the
window while one or more mouse buttons are pressed
x,y are coordinates of mouse when event occurred

void glutPostRedisplay(void);
Calls glutPostRedisplay() in order to re-draw window

Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

43

Handling Window and Event Functions (3):

Display Callback Function Example:
All drawing is done in this function

Define Function:
void myDisplayFunction(void){
// Insert any “drawing” specific commands here
// e.g. viewing/model transformations

glBegin(GL_POLYGON);
glVertex3fv(x1, y1, z1);
glVertex3fv(x2, y2, z2);
glVertex3fv(x3, y3, z3);
. . .

glEnd();
}

Register callback:
glutDisplayFunc(myDisplayFunction);

44

Handling Window and Event Functions (4):
Keyboard Callback Function Example:

Define Function:
void myKeyboardFunction(char key, int x, int y){

switch(key) {
case ‘q’:
exit(1);
break;
case ‘r’:
rotateObject = GL_TRUE;
break;

}
}

Register callback:
glutKeyboardFunc(myKeyboardFunction);

45

Drawing 3D Objects:
Several Drawing Routines for 3D Objects

All graphics rendered in immediate mode (e.g. drawn
immediately rather than at a latter time)
Two “flavors” for each 3D object:
1. Wire-frame → no surface normals
2. Solid → surface normals included – for lighting
Example functions for 3D objects:

glutWireCube(GLdouble size);

glutSolidCube(GLdouble size);

glutWireTeapot(GLdouble size);

glutSolidTeapot(GLdouble size);

46

Sample GLUT Code (1):
// Initialization of GLUT, display mode and window
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(640, 480);
glutInitWindowPosition(100, 150);
glutCreateWindow(“Test”);

// Register any callback functions
glutDisplayFunc(myDisplayFunction);
glutReshapeFunc(myReshapeFunction);
glutMouseFunc(myMouseFunction);
glutKeyboardFunc(myKeyboardFunction);

// Enter the GLUT main loop and wait for any events
glutMainLoop();

}

47

Getting Started (1):
Microsoft Windows (XP) & Visual Studio (C++)

OpenGL included in newer versions of Windows OS

If using MS Visual Studio GLUT also installed

Compiling and linking – After creating project
From menu bar, go to

“Project -> Settings -> … Link”
Add the following string to the “Objects/Library
Modules” string
“opengl32.lib glu32.lib glut32.lib”

Build & execute program

48

Getting Started (2):
Include Libraries

For all OpenGL applications, include gl.h in every file
Almost all OpenGL applications use GLU, so include
glu.h as well
If using Glut, you also need glut.h
OpenGL source file typically begins with

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

But glut.h includes the gl.h and glu.h so reall only
glut.h is needed!

Bill Kapralos
COSC 4431 Intro. To OpenGL & GLUT

49

Getting Started (3):
Setting Up Project in Visual Studio/C++

1. Load Visual Studio/C++

2. File->New a dialog box will appear - choose "Win 32 Console
Application", give the project a name and press "OK“

3. Another dialog box will then appear: choose "A Simple
Application" and click "Finish“

4. Your new project workspace will now be available and on the
screen - add the three libraries as previously described

5. All necessary files etc. will be generated in addition to the file
containing “main” method – this is entry point

