COSC 4431/5331
Computer Graphics

Bill Kapralos
Thursday January 22, 2004

YORK I

URIVEREITE
URIVERSITY

Overview (1):
2 Getting Started

Setting up OpenGL/GLUT on Windows/Visual Studio

2 Viewing Overview
Introduction
« Camera analogy

* Matrix operations and OpenGL
2 Viewing Transformation Details
Viewing transformation
Projection transformation

Viewport transformation

Getting Started

Getting Started (1):
@ Installing GLUT

Download GLUT from Nate Robin's web site
= http://www.xmission.com/~nate/glut.html
+ Download: glut-3.7.6-bin.zip (117 KB)

Three files of interest: glut32.dll, glut32.lib & glut.h
= Place them in following directories:
glut32.dll to Wndows\System

glut32.1ib to \VCI8\Iib,
glut.h to \VCI8\incl ude\GL.

VC98 directory is in the Visual Studio directory:
C:\Program Files\Microsoft Visual Studio\VC98

Getting Started (2):
Microsoft Windows (XP) & Visual Studio (C++)

OpenGL included in newer versions of Windows OS
« Compiling and linking - After creating project
= From menu bar, go to
“Project -> Settings -> ... Link”

= Append the following string to the existing
“Objects/Library Modules” string

“opengl 32.1ib glu32.1ib glut32.1ib”

= Build & execute program

Bill Kapralos
COSC 4431 — January 22 2004

Getting Started (3):

Include Libraries
For all OpenGL applications, include gl.h in every file

Almost all OpenGL applications use GLU, so include
glu.h as well

If using Glut, you also need glut.h
OpenGL source file typically begins with

#i ncl ude <GL/gl.h>
#i ncl ude <@/ gl u. h>
#include <@/ glut.h>

But glut.h includes the gl.h and glu.h so really only
glut.h is needed!

Getting Started (4):
Setting Up Project in Visual Studio/C++

1 Load Visual Studio/C++

2. File->New a dialog box will appear - choose "Win 32 Console
Application”, give the project a name and press " OK*

3. Another dialog box will then appear: choose "A Simple
Application" and click "Finish*

4. Your new project workspace will now be available and on the
screen - add the three libraries as previously described

s. All necessary files etc. will be generated in addition to the file
containing “main” method - this is entry point

Viewing Overview

Introduction to Viewing (1):

Summary of Transformations
Viewing
+ Position viewing volume in the world
Modeling
+ Position models in the real world
Projection
= Determine shape of viewing volume
Viewport
= Draw final “image” to display window

Introduction to Viewing (2):

@ Camera Analogy
Viewing
+ Set-up tripod
+ Point camera at the scene
Modeling
= Arrange the scene to be photographed
Projection
+ Choose desired camera lens and zoom
= Viewport
= Determine how large final photograph will be

Introduction to Viewing (3):

With a Camera With a Computer

- i e
Viewing —— ==

asitioning the viewing valume
L e et

Modeling — \‘fi%

Projection —— @ sy

photograpny iewport

Viewport ——— I ;2 %

Bill Kapralos
COSC 4431 — January 22 2004

Introduction to Viewing (4):
Stages of Vertex Transformations
4 x 4 matrix M is used to specify viewing, modeling
and projection transformations

Transformation is accomplished by multiplying
coordinates of each vertex vin scene by M ? v’ = Mv

oo Modelview Farspective
E-rsy Matrix Divislon

. Viewport \
/ [rrenstormation |}
clip normalized device window

Projoction I\
ik)]

E S
g ——

object
coordinates

Introduction to Viewing (5):

Transformation Matrices
Homogenous coordinates e.g. [X, y, z, w]
= w is typically equal to 1
Modelview Matrix
+ Combined viewing and modeling transformations

= Convert “object” coordinates in world to (viewer)
eye coordinates

13

Introduction to Viewing (6):

Transformation Matrices (cont...)

Ordering of Transformations is important

= Rotation followed by translation is not necessarily
equivalent to translation followed by rotation!

= Matrix multiplication: ML not always equal to LM

Rotate then Translate Translate then Rotate 14

Introduction to Viewing (7):

2@ Current Matrix
State Variable

Single matrix used to perform transformations
+ Modelview, projection & texture transformations
Transformations are applied to current matrix
= Vertices multiplied by current matrix
Warning ? Transformations are accumulative
Typically need to “reset” current matrix prior to

performing transformation

gl Loadl dentity()

15

Introduction to Viewing (8):

@ Current Matrix (cont...)

Can specify which of the three matrices becomes the
current matrix using glMatrixMode()

gl Mat ri xMode(mat ri x)

matrix ? GL_MODELVIEW, GL_PROJECTION,GL_TEXTURE

gl Mat ri xMbde(GL_MODELVI EWY
gl Mat ri xMode(G._PRQIECTI ON)
gl Mat ri xMode(GQ._TEXTURE)

Introduction to Viewing (9):

Notes Regarding Transformations

Window Coordinates

+ Obtained after applying the viewport
transformation

+ Coordinates relative to display window

Transformations Assumptions

Requires some knowledge of linear algebra
(matrices)

17

Viewing Details

Bill Kapralos
COSC 4431 — January 22 2004

Viewing Transformations (1):
Viewing

Transformation v
. . A Model
Changes direction and

orientation of viewpoint
or eye 4
Default location]
+ Origin (0,0,0) = l x
+ Pointing (looking) 7/_1_
down -z axis z

Camera (eye)
19

Viewing Transformations (2):
2 Viewing Transformation (cont..)
Several ways to change viewing position/direction
1. Use modeling transformation commands:
glRotate() and glTranslate()
2. GLU routine: gluLookAt()

3. Create your own “utility routine” which
encapsulates rotations and translations

Viewing Transformations (3):
Transformations in OpenGL
Translation: gl Transl ate(x, vy, z)

= Multiplies current matrix that moves object by
the given x,y,z values

Rotation: gl Rotation(angle, x, y, z)

= Multiplies current matrix that rotates object in
counter-clockwise direction about ray from origin
through x,y,z
Scale: gl Scal e(x, y, z)

+ Stretches, shrinks or reflects object along axis
21

Viewing Transformations (4):

@ Using Modeling Transformations
Rather than moving camera (or viewer, eye), move
the model while leaving camera at default position
Same effect - as it's the position of camera
relative to model that's of interest
e.g. rather than moving camera backwards, 5
units, from objects (model), move objects
forward from camera by 5 units

gl Transl ate(0.0, 0.0, -5.0)

Remember ? Forward is down -z axis!

Viewing Transformations (5):

Using Modeling Transformations - lllustration

Original camera
position

= ~ New camera position
z z
Move object forward Move camera backward

Along -z-axis along z-axis

23

Bill Kapralos
COSC 4431 — January 22 2004

Viewing Transformations (6):

gluLookAt()
Three sets of arguments (all of type GLdouble):
Eye coordinates (X,y,z)
Point to be viewed along line of sight (x,y,z)
Orientation vector - which direction is UP (X,y,z)

gl uLookAt (eyeX, eyeY, eyeZ, centerX, centerY,
centerZ, upX, upY, upZ);

Default Settings
Eye (camera) at origin
Looking down -z axis, positive y-axis straight up

24

Viewing Transformations (7):
gluLookAt() Examples

Viewing volume

¥ Viewing volume

Default gluLookAt(4,2,1,2,4,-3,2,2-1);

25

Projection Transformations (1):

Projection Transformations

Purpose ? define a viewing volume which:
1. Determines how object is projected onto screen
? either perspective or orthographic projection
2. Defines which objects or portions of objects are
“clipped” (removed) from final image

Projection Transformations (2):
Perspective Projection

Viewing volume is a frustum
+ Truncated pyramid with top cut off
= Six planes: left, right, bottom, top, near, far

Pyramid apex
& viewpoint

frustum

Frustum

27

Projection Transformations (3):

Perspective Projection (cont...)
Objects falling within frustum are projected
towards viewpoint (pyramid apex)
Objects closer to view point occupy larger amount
of viewing volume

Foreshortening ? the farther an object from
camera, the small it appears in final image

+ Similar to how our eyes work
Two ways to set up in OpenGL

1. gluFrustum()

2. gluPersepctive()

Projection Transformations (4):
glFrustum()

gl Frustun(left, right, bottom top, near, far);

Viewing volume defined by coordinates:

+ (left, bottom, -near) ? lower left (x,y,z)
coordinates

= (right, top, -far) ? upper right (x,y,z)
coordinates

29

Bill Kapralos
COSC 4431 — January 22 2004

Projection Transformations (5):

gluPerspective()
gl Frustun{fovy, aspect, near, far);

« fovy ? Field of view angle in the yz plane [0 - 180°]
aspect? Aspect ratio (width/height)

near, far? distance to near and far planes from
viewpoint down -z-axis!!

Projection Transformations (6):

gluPerspective() Graphical Illustration

o -
! near L
-

-

Y

31

Projection Transformations (7):

2@ QOrthographic Projection
Viewing volume is a rectangular parallelepid (a box)

= Size of viewing volume doesn't change from one
end to other

Distance from camera is irrelevant to size of
projected object

Used for blueprint drawings, CAD and applications
where object dimensions are important

Two ways to set up in OpenGL
1. glOrtho()
2. gluOrtho2D()

Projection Transformations (8):
glOrtho()

gl Otho(left, right, bottom top, near, far);

Viewing volume defined by coordinates:

+ (left, bottom, -near) & (right, top, -near) ? are
on near clipping plane & mapped to lower left and
upper right viewport window respectively

= (left, bottom, -far) & (right, top, -far) ? are on
far clipping plane & also mapped to lower left
and upper right viewport window respectively

33

Projection Transformations (9):

@ glOrtho() Graphical Illustration

top
AL
Iaﬂ—Sb
-
wwmzrd ‘L right

A

near far

Projection Transformations (10):
gluOrtho2D()

glOtho(left, right, bottom top);

Use with 2D scene onto a 2D screen only!
Coordinates of rectangular clipping region

+ Left, right, bottom, top

35

Bill Kapralos
COSC 4431 — January 22 2004

Viewport Transformations (1):

Chooses “Size” of Final Image on Screen
Defines the rectangle in the window which final
image is placed

gl Viewport(x, y, width, height);

Integer argument types (Glint)

+ X,y ? lower left corner of viewport

+ width, height ? size of the viewport rectangle
Default:

= (0, 0, winWidth, winHeight) e.g. entire window

Viewport Transformations (2):

Some Notes

Aspect ratio of viewport should be equal to aspect
ratio of viewing volume otherwise final image will be
distorted!

Remember ? window re-sizing may require re-
setting of viewport!

37

Viewport Transformations (3):

Distortion Example
Normal Viewing (square window 400 x 400)
gl uPer spective(fovy, 1.0, near, far);

gl Viewport (0, 0, 400, 400);

Distorted View:
= Resized window to a non-equilateral rectangular
viewport, 400 x 200
= Projection remains the same (un-changed)

gl uPer spective(fovy, 1.0, near, far);
gl Vi ewport (0, 0, 400, 200);

Viewport Transformations (4):

undistorted distorted

Corrected View:
= Modify aspect ratio to match viewport

gl uPer spective(fovy, 2.0, near, far);

gl Viewport (0, 0, 400, 200); 30

Putting it All Together (1):

Notes Regarding Viewing Transformations
Modelview transformations typically specified when
drawing/re-drawing the scene
+ Display callback function! For example:

void display(void) {
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glLoadldentity (); /* clear the matrix */
/* viewing transformation */
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glScalef (1.0, 2.0, 1.0); /* modeling transformation */
glutWireCube (1.0);
glFlush ();

Putting it All Together (2):

Notes Regarding Viewing Transformations

Projection and viewport typically specified when
window is initially created/re-seized etc...

= Window re-shape callback function! For example:

void reshape (int w, int h) {
glViewport (O, O, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
glFrustum (-1.0, 1.0,-1.0, 1.0, 1.5, 20.0);
glMatrixMode (GL_MODELVIEW);

41

Bill Kapralos
COSC 4431 — January 22 2004

Putting it All Together (3):
Final Notes

Many problems you encounter are probably due to
incorrect viewing set-up

Ensure objects (model) are within viewing volume -
remember, near/far planes are down -z axis

For example: if near and far are 1 and 3
respectively, make sure objects are within 1 and 3
as well

+ Try temporarily setting near and far planes to
0.0001 and 100000

