
Bill Kapralos
COSC 4431 – January 22 2004

COSC 4431/5331
Computer Graphics

Bill Kapralos

Thursday January 22, 2004

2

Overview (1):
Getting Started

Setting up OpenGL/GLUT on Windows/Visual Studio

Viewing Overview
Introduction

Camera analogy

Matrix operations and OpenGL

Viewing Transformation Details
Viewing transformation

Projection transformation

Viewport transformation

3

Getting Started

4

Getting Started (1):
Installing GLUT

Download GLUT from Nate Robin’s web site

http://www.xmission.com/~nate/glut.html
Download: glut-3.7.6-bin.zip (117 KB)

Three files of interest: glut32.dll, glut32.lib & glut.h

Place them in following directories:

glut32.dll to Windows\System,
glut32.lib to \VC98\lib,
glut.h to \VC98\include\GL.

VC98 directory is in the Visual Studio directory:
C:\Program Files\Microsoft Visual Studio\VC98

5

Getting Started (2):
Microsoft Windows (XP) & Visual Studio (C++)

OpenGL included in newer versions of Windows OS

Compiling and linking – After creating project
From menu bar, go to

“Project -> Settings -> … Link”

Append the following string to the existing
“Objects/Library Modules” string
“opengl32.lib glu32.lib glut32.lib”

Build & execute program

6

Getting Started (3):
Include Libraries

For all OpenGL applications, include gl.h in every file

Almost all OpenGL applications use GLU, so include
glu.h as well
If using Glut, you also need glut.h

OpenGL source file typically begins with

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

But glut.h includes the gl.h and glu.h so really only
glut.h is needed!

Bill Kapralos
COSC 4431 – January 22 2004

7

Getting Started (4):
Setting Up Project in Visual Studio/C++

1. Load Visual Studio/C++

2. File->New a dialog box will appear - choose "Win 32 Console
Application", give the project a name and press "OK“

3. Another dialog box will then appear: choose "A Simple
Application" and click "Finish“

4. Your new project workspace will now be available and on the
screen - add the three libraries as previously described

5. All necessary files etc. will be generated in addition to the file
containing “main” method – this is entry point

8

Viewing Overview

9

Introduction to Viewing (1):
Summary of Transformations

Viewing

Position viewing volume in the world

Modeling

Position models in the real world

Projection

Determine shape of viewing volume

Viewport
Draw final “image” to display window

10

Introduction to Viewing (2):
Camera Analogy

Viewing

Set-up tripod
Point camera at the scene

Modeling

Arrange the scene to be photographed

Projection

Choose desired camera lens and zoom

Viewport

Determine how large final photograph will be

11

Introduction to Viewing (3):

Viewing

Modeling

Projection

Viewport

12

Introduction to Viewing (4):
Stages of Vertex Transformations

4 x 4 matrix M is used to specify viewing, modeling
and projection transformations

Transformation is accomplished by multiplying
coordinates of each vertex v in scene by M ? v’ = Mv

Bill Kapralos
COSC 4431 – January 22 2004

13

Introduction to Viewing (5):
Transformation Matrices

Homogenous coordinates e.g. [x, y, z, w]

w is typically equal to 1

Modelview Matrix

Combined viewing and modeling transformations

Convert “object” coordinates in world to (viewer)
eye coordinates

14

Introduction to Viewing (6):
Transformation Matrices (cont…)

Ordering of Transformations is important

Rotation followed by translation is not necessarily
equivalent to translation followed by rotation!

Matrix multiplication: ML not always equal to LM

15

Introduction to Viewing (7):
Current Matrix

State Variable

Single matrix used to perform transformations
Modelview, projection & texture transformations

Transformations are applied to current matrix

Vertices multiplied by current matrix

Warning ? Transformations are accumulative

Typically need to “reset” current matrix prior to
performing transformation

glLoadIdentity()
16

Introduction to Viewing (8):
Current Matrix (cont…)

Can specify which of the three matrices becomes the
current matrix using glMatrixMode()

glMatrixMode(matrix)

matrix ? GL_MODELVIEW, GL_PROJECTION,GL_TEXTURE

glMatrixMode(GL_MODELVIEW)
glMatrixMode(GL_PROJECTION)
glMatrixMode(GL_TEXTURE)

17

Introduction to Viewing (9):
Notes Regarding Transformations

Window Coordinates

Obtained after applying the viewport
transformation

Coordinates relative to display window

Transformations Assumptions
Requires some knowledge of linear algebra
(matrices)

18

Viewing Details

Bill Kapralos
COSC 4431 – January 22 2004

19

Viewing Transformations (1):
Viewing

Transformation
Changes direction and
orientation of viewpoint
or eye

Default location
Origin (0,0,0)

Pointing (looking)
down –z axis

Camera (eye)

Model

20

Viewing Transformations (2):
Viewing Transformation (cont…)

Several ways to change viewing position/direction

1. Use modeling transformation commands:
glRotate() and glTranslate()

2. GLU routine: gluLookAt()

3. Create your own “utility routine” which
encapsulates rotations and translations

21

Viewing Transformations (3):
Transformations in OpenGL

Translation: glTranslate(x, y, z)

Multiplies current matrix that moves object by
the given x,y,z values

Rotation: glRotation(angle, x, y, z)

Multiplies current matrix that rotates object in
counter-clockwise direction about ray from origin
through x,y,z

Scale: glScale(x, y, z)

Stretches, shrinks or reflects object along axis
22

Viewing Transformations (4):
Using Modeling Transformations

Rather than moving camera (or viewer, eye), move
the model while leaving camera at default position

Same effect – as it’s the position of camera
relative to model that’s of interest
e.g. rather than moving camera backwards, 5
units, from objects (model), move objects
forward from camera by 5 units

glTranslate(0.0, 0.0, -5.0)

Remember ? Forward is down –z axis!

23

Viewing Transformations (5):
Using Modeling Transformations -Illustration

Move object forward
Along –z-axis

Move camera backward
along z-axis

New camera position

Original camera
position

24

Viewing Transformations (6):
gluLookAt()

Three sets of arguments (all of type GLdouble):

Eye coordinates (x,y,z)
Point to be viewed along line of sight (x,y,z)

Orientation vector – which direction is UP (x,y,z)

gluLookAt(eyeX, eyeY, eyeZ, centerX, centerY,
centerZ, upX, upY, upZ);

Default Settings
Eye (camera) at origin

Looking down –z axis, positive y-axis straight up

Bill Kapralos
COSC 4431 – January 22 2004

25

Viewing Transformations (7):
gluLookAt() Examples

Default

Viewing volume
Viewing volume

gluLookAt(4,2,1, 2,4,-3, 2,2,-1);

26

Projection Transformations (1):
Projection Transformations

Purpose ? define a viewing volume which:

1. Determines how object is projected onto screen
? either perspective or orthographic projection

2. Defines which objects or portions of objects are
“clipped” (removed) from final image

27

Projection Transformations (2):
Perspective Projection

Viewing volume is a frustum:

Truncated pyramid with top cut off

Six planes: left, right, bottom, top, near, far

Frustum

Pyramid apex
& viewpoint

28

Projection Transformations (3):
Perspective Projection (cont…)

Objects falling within frustum are projected
towards viewpoint (pyramid apex)

Objects closer to view point occupy larger amount
of viewing volume

Foreshortening ? the farther an object from
camera, the small it appears in final image
Similar to how our eyes work

Two ways to set up in OpenGL
1. gluFrustum()
2. gluPersepctive()

29

Projection Transformations (4):
glFrustum()

glFrustum(left, right, bottom, top, near, far);

Viewing volume defined by coordinates:

(left, bottom, -near) ? lower left (x,y,z)
coordinates
(right, top, - far) ? upper right (x,y,z)
coordinates

30

Projection Transformations (5):
gluPerspective()

glFrustum(fovy, aspect, near, far);

fovy ? Field of view angle in the yz plane [0 – 180o]

aspect ? Aspect ratio (width/height)

near, far ? distance to near and far planes from
viewpoint down –z-axis! !

Bill Kapralos
COSC 4431 – January 22 2004

31

Projection Transformations (6):
gluPerspective() Graphical Illustration

32

Projection Transformations (7):
Orthographic Projection

Viewing volume is a rectangular parallelepid (a box)
Size of viewing volume doesn’t change from one
end to other
Distance from camera is irrelevant to size of
projected object

Used for blueprint drawings, CAD and applications
where object dimensions are important
Two ways to set up in OpenGL
1. glOrtho()
2. gluOrtho2D()

33

Projection Transformations (8):
glOrtho()

glOrtho(left, right, bottom, top, near, far);

Viewing volume defined by coordinates:
(left, bottom, -near) & (right, top, -near) ? are
on near clipping plane & mapped to lower left and
upper right viewport window respectively

(left, bottom, -far) & (right, top, -far) ? are on
far clipping plane & also mapped to lower left
and upper right viewport window respectively

34

Projection Transformations (9):
glOrtho() Graphical Illustration

35

Projection Transformations (10):
gluOrtho2D()

glOrtho(left, right, bottom, top);

Use with 2D scene onto a 2D screen only!

Coordinates of rectangular clipping region

Left, right, bottom, top

36

Viewport Transformations (1):
Chooses “Size” of Final Image on Screen

Defines the rectangle in the window which final
image is placed

glViewport(x, y, width, height);

Integer argument types (Glint)

x, y ? lower left corner of viewport

width, height ? size of the viewport rectangle

Default:
(0, 0, winWidth, winHeight) e.g. entire window

Bill Kapralos
COSC 4431 – January 22 2004

37

Viewport Transformations (2):
Some Notes

Aspect ratio of viewport should be equal to aspect
ratio of viewing volume otherwise final image will be
distorted!

Remember ? window re-sizing may require re-
setting of viewport!

38

Viewport Transformations (3):
Distortion Example

Normal Viewing (square window 400 x 400)

gluPerspective(fovy, 1.0, near, far);
glViewport(0, 0, 400, 400);

Distorted View:
Resized window to a non-equilateral rectangular
viewport, 400 x 200

Projection remains the same (un-changed)

gluPerspective(fovy, 1.0, near, far);
glViewport(0, 0, 400, 200);

39

Viewport Transformations (4):

Corrected View:

Modify aspect ratio to match viewport

gluPerspective(fovy, 2.0, near, far);
glViewport (0, 0, 400, 200); 40

Putting it All Together (1):
Notes Regarding Viewing Transformations

Modelview transformations typically specified when
drawing/re-drawing the scene

Display callback function! For example:

void display(void) {
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glLoadIdentity (); /* clear the matrix */
/* viewing transformation */
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glScalef (1.0, 2.0, 1.0); /* modeling transformation */
glutWireCube (1.0);
glFlush ();

}

41

Putting it All Together (2):
Notes Regarding Viewing Transformations

Projection and viewport typically specified when
window is initially created/re-seized etc…

Window re-shape callback function! For example:

void reshape (int w, int h) {
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
glMatrixMode (GL_MODELVIEW);

}

42

Putting it All Together (3):
Final Notes

Many problems you encounter are probably due to
incorrect viewing set-up

Ensure objects (model) are within viewing volume –
remember, near/far planes are down –z axis

For example: if near and far are 1 and 3
respectively, make sure objects are within 1 and 3
as well

Try temporarily setting near and far planes to
0.0001 and 100000

