

Auditory Cues in the Perception of Self Motion

Bill Kapralos^{1,4}, Daniel Zikovitz^{2,4}, Michael R. Jenkin^{1,4}, Laurence R. Harris^{3,4}

{billk, danz, jenkin}@cs.yorku.ca

harris@yorku.ca

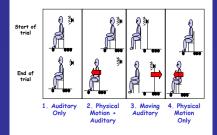
¹Department of Computer Science, ²Department of Biology, ³Department of Psychology York University, Toronto Ontario Canada, M3J 1P3

⁴Centre for Vision Research, York University, Toronto Ontario, Canada M3J 1P3

Introduction

Self-Motion Perception

- How do we know we have moved relative to the external world?
 - Physical cues, sensed by vestibular organ
 - □ Visual cues: optic flow


 - Auditory cues: changes in intensity and reverberation, Doppler frequency shifts
- Self motion perception is not fully understood → most studies have focused primarily on visual and vestibular cues
- \Box Self motion is over-estimated \rightarrow we perceive we travel further than we actually do
- Accuracy increases with increasing acceleration
- Even less is known about the role of auditory

Developing a better understanding can lead to more accurate simulations

Project Goals

Examine Auditory Self-Motion Perception

- Measure the contribution of auditory cues to self motion perception
- Four Experiments
 - 1. Audio Only \rightarrow how reliable of a cue is decreasing sound source associated with increasing sound source distance, to self motion perception ?
 - Physical Motion + Auditory \rightarrow how well can we judge our self motion relative to a stationary sound source ?
 - 3. Moving Auditory \rightarrow does a sound source physically moving away from the subject provide a more robust cue to self motion perception ?
 - Physical Motion Only → how well can we judge our self motion in the presence of physical motion cues and absence of auditory cues ?

Apparatus

Subject Motion Cart (Conditions 1,2,4)

- Subject response button" on arm rest Pulled at constant acceleration with
- motion profile generated by motor

Loudspeaker Motion Cart (Condition 3 only)

- Two loudspeakers
- mounted on each side of cart Pulled at constant acceleration with
- motion profile generated by motor

Motor and Pulley Assembly

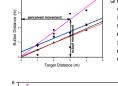
EG & G MT-5330 servo motor controlled by a Galil DMC-630 motion controller Steel cable connected cart to motor via pulley assembly

■Auditory Stimulus → White Noise

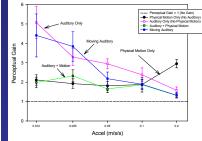
- Broadband (200Hz 10kHz), uniformly distributed Sound source localization generally more accurate with broadband sound source
 - Initial sound source level of each trial randomly chosen from one of: 72dB, 69dB or 66dB

Experimental Procedure

- 1. Subject at starting position shown visual (physical, "real world") target
- Target at either 1m, 2m, 3m or 4m away
- 2. Subject blindfolded (all four experiments)
- 3. Presented with stimulus audio and/or physical motion One of five motion profiles
 - $\rightarrow 0.012 \text{ms}^{-2} \ 0.025 \text{ms}^{-2} \ 0.05 \text{ms}^{-2} \ 0.1 \text{ms}^{-2} \ 0.2 \text{ms}^{-2}$
- 3. Subjects indicated when they reached target position by pressing response button on cart
 - Time and distance recorded by computer


Results Perceptual Gain (g_p) Measure

Subject's perceived distance d_p compared to the actual distance d, moved


$$=\frac{d_{p}}{d_{r}}$$

g

 $\Box g_{p} = 1 \rightarrow d_{p} = d_{a}$ (ideal scenario) $\Box g_{p} > 1$ then $d_{p} > d_{a} \rightarrow over-estimate$ $\Box g_{p} < 1 \text{ then } d_{p} < d_{a} \rightarrow \text{ under-estimate}$

Discussion/Summary

- Over Estimate Self Motion in all Conditions \rightarrow On Average, 2x - 3x
- ■Least Accurate → Audio Only
- Over-estimation of approx. 5x
 - To be expected sound source distance estimates made using intensity alone are generally over-estimated
- Most Accurate → Motion + Audio
- Sound seems to be effective in making self motion estimation more accurate
- This improvement cannot be attributed to the auditory system alone
- Perhaps it represents an accurate anchor point to which self motion can be related

No Significant Difference Between Moving Audio and Audio Only

Increasing accuracy with increasing acceleration observed in both conditions