Automatic Recognition of Hand Raising Gestures & Voice Requests for a Remote Learning Application

Bill Kapralos1,3, Alexander Barth2, Jacky Ma1, Michael Jenkin1,3
{billk, jenkin}@cs.yorku.ca

1Department of Computer Science, York University, Toronto Ontario, Canada M3J 1P3
2Dept. Of Computer Science, Bonn-Rhein-Sieg University, St. Augustin, Germany
3Centre for Vision Research, York University, Toronto Ontario, Canada M3J 1P3

Introduction

- Synchronous Distance Learning (SDL)
 - Permits for live discussion & immediate feedback
 - Can provide expert instructors to a geographically dispersed set of students
- Central Issue in Developing an SDL System:
 - Enabling interaction between instructor & students of remote classes
 - How do students signal their intent to interact with the instructor?
 - Hand raising, speaking aloud
 - How does instructor select & attend to a student?

Project Goals

- Develop an SDL System Integrating Audio & Video Cues:
 - In a multiple student setting, automatically attend to a student wishing to interact with the instructor:
 - Students may speak or raise their hand to attract instructor's attention
 - Permit for dialogue between students & instructor as in "normal" classroom setting

System Architecture

- Microphone Array:
 - Four omni-directional microphones mounted in a static pyramidal shape about the ParaCamera
 - Beamforming → "Steer" array in some direction:
 - Appropriately delaying the signal of each mic.
 - Ensures desired signal is reinforced, while noise & sound coming from other directions is attenuated

- Cyclovision’s ParaCamera:
 - Omni-directional video sensor captures view of the entire visual hemisphere from a single viewpoint
 - Hemispherical view is easily "un-warped", allowing for multiple dynamic views of the scene

- Pan-Tilt Mounted Zoom Camera:
 - Low Resolution ParaCamera Image:
 - Provides quick overview of scene
 - Detect students wishing to interact
 - "Traditional" Zoom Camera Mounted on Pan-Tilt Unit (PTU):
 - Automatically steered in direction of potential speaker

Audio System

- Microphone 1
- Microphone 2
- Microphone 3
- Microphone 4

Video System

- Pan-Tilt Zoom Camera
- ParaCamera Mirror
- Lens Assembly

Instructor’s Touch-Screen GUI

Overview

- At Remote (Student) Sites:
 - Detect potential people present in ParaCamera view wishing to interact with instructor (hand raising gestures or speech)
 - Estimate their "real-world" direction
 - Present this info. to the instructor’s GUI

- At Instructor’s Site:
 - By "clicking" on GUI, interaction can take place
 - Pan-tilt camera & audio array focused on student

Detecting Hand Raising Gestures

- Color Cues:
 - HSV color models for both skin and non-skin color classes:
 - Constructed by manually classifying portions of ParaCamera images as either skin or non-skin
 - Bayes’ rule is used to classify the pixels of each image as either skin or non-skin
 - Group "connected skin pixels" into separate regions
 - Separate skin regions into clusters

- Motion Cues:
 - Restrict skin color pixel classification to regions in image where motion occurs:
 - Image differencing over one or more frames
 - Background subtraction or subtraction of image at time \(\tau \) and \(\tau - n \)

- Segmentation of the Raising Hand/Arm:
 - Group together spatially close skin color regions which have "moved"
 - Convex Hull

- Sample Output:
 - Sequence of three consecutive images of a hand raising gesture:
 - Yellow outline denotes raising hand/arm as determined by the system