Auditory Perception & Virtual Environments

COSC 6002 - Directed Readings in Virtual Reality: Technology & Perception

> Bill Kapralos January 27, 2003

Overview (1):

Introduction

- Importance of sound localization
- Sound in a virtual environment (VE)
- What exactly is sound?
- Sound localization & auditory distance perception
 Interaural cues (ITD, ILD), HRTF, reverberation
- Recording Techniques (History of 3D Sound)
 - Two channel stereo
 - Surround sound

Overview (2):

- Simulating Audio Localization Cues in a VE
 - Modeling ITD
 - Binaural audio, HRTF measurement and synthesis
 - Reverberation and modeling of room acoustics
 - Auditory distance simulation
- Sound Output: Headphones vs. Loudspeakers
 - Headphone listening
 - Transaural audio and crosstalk cancellation
- Conclusions & Comments

Introduction

Importance of Sound Localization:

Hearing Provides info About our Environment

- Spatial sounds give detailed info of our surroundings
 - Determine direction and distance to objects
 - + Warn of approaching dangers e.g. predators
- Unlike vision, hearing is omni -directional
 - Can hear in complete darkness!
- Can guide the more "finely tuned" visual attention • Eases the burden of the visual system

Spatial Sound in a VE (1):

Importance of Spatial Audio in a VE

- · Conveys basic info. to the the users
 - + e.g. footsteps in small room vs. outside (large field)
- Allows users to orient themselves
- Increases situational awareness
- Maintains a sense of environmental realism
 Helps increase immersion and hence presence
- Can enhance perception of video quality
- Can provide a sense of ambience mood and emotion

Spatial Sound in a VE (2):

Spatial Audio Often Ignored in a VE

- When present, typically:
 - Cues are poor and don't always reflect natural spatial cues
 - "Far field" acoustical model assumed source at infinity, plane waves
- Emphasis typically placed on visual senses
 - Graphics
 - Stereo vision etc...

Implementing Audio Cues in a VE:

- Imitate Human Sound Localization Cues:
 - ITD ? Interaural Time Delay
 - ILD (IID) ? Interaural Level (Intensity) Difference
 - HRTF ? Head Related Transfer Function
 - Reverberation
 - Vision (e.g. easily localize a sound source we can see)
- 3D Audio by Simulating Human Cues
 - ITD & ILD alone are simple but limited ambiguous
 - HRTFs improve localization and reduce ambiguities

Physics of Sound:

What Exactly is Sound?

- Variations in air pressure caused by vibrating object
 Guitar string, tuning fork, vocal chords, etc...
- Alternating regions of compression and rarefaction of the air (medium) molecules

A Simple Sound Wave: Sinusoidal (Sine) Wave Known as a tone or pure tone Simple response Simple response Simple analysis Not Typically Encountered in Normal Listening Complex tones instead Fourier Analysis Complex tone ? superposition of sinusoids!

10

12

Coordinate System (1):

"Head Centered" Rectangular System

- · Center of the head defines origin
- 🔹 x, y, z axis

Three Planes of Interest:

- Median: right/left separation
- Frontal: front/back separation
- Horizontal: up/down separation

Interaural Axis:

"Line" passing through ears

11

Coordinate System (2):

- Spherical Coordinate System:
 - Azimuth (?), elevation (?) and range (r) to specify coordinates
 - Center of head defines origin

Sound Localization (1):

• Lord Raleigh's Duplex Theory (1907):

- Assumes a spherical head with no pinnae
- ITD: difference in time between arrival of sound at each ear Low frequencies: < 1500Hz
- ILD: intensity difference between sound at each ear
 High frequencies: > 1500Hz

Sound Localization (2):

- Shortcomings of the Duplex Theory
 - Front-back Ambiguities
 - Cone of confusion

Sound Localization (3):

- Head Related Transfer Function (HRTF)
 - Filtering of sound spectrum by interactions of sound with head, torso and particularly pinna

Pinna:

- Series of grooves and notches which accentuate or suppress mid
 & high frequency components in a position dependant manner
- Each person's pinna differs ? filtering effects differ

15

Sound Localization (4):

Sample HRTFs:

Sound Localization (5):

Reverberation

- Typical environments are rarely anechoic!
- Sound waves interact with objects in the environment
 Portion of sound waves are reflected and absorbed
 Portion absorbed by the medium itself (e.g. air)
- Collection of reflected waves (possibly 1000s) is known as reverberation

17

19

Sound Localization (6): Dynamic Cues Head movements to resolve front-back ambiguities Source directly in front

Auditory Distance Perception:

- Relative & Absolute Distance Cues
- Main Auditory Distance Cues:
 - Sound level (intensity): inverse square law
 - Reverberation: ratio of direct to reverberant energy
 - Sound source frequency spectrum: attenuation of high frequency components as a function of distance
 - Binaural: distance dependence of ILD for sources in the "near field"
 - Source characteristics: spectrum composition etc.

Listener "Sweet Spot":

• Auditory Effect Restricted to Small Region

- Listener must be placed in specific location relative to the loudspeakers
- Even small movements can seriously degrade effect!
- Common to all loudspeaker based systems
 - "True" and "non-true" 3D sound systems
- Dependent on:
 - Technique used
 - Number of loudspeakers
 - + Characteristics of loudspeakers

Monaural Techniques:

- Single Microphone to Record Sound Event
 - Recording conveyed using single loudspeaker
 - · First method used to convey sound in films

Shortcomings:

21

- · Cannot capture any binaural cues
- Difficult to convey any ambience
- Differentiating noise from signal of interest

22

24

- Still Relevant Today
 - Telephone from 1876 to present

Stereophonic (Stereo) Techniques (1):

- Synonymous with Two Channel Audio
 - Actually refers to construction of believable, solid, stable sound "images" regardless # of channels
 - * Stereo and "surround sound" refer to same thing!

Stereo Setup:

Listener and loudspeakers
 form equilateral triangle

 Virtual source positioned between loudspeakers

23

Stereophonic (Stereo) Techniques (2):

- Artificial Techniques:
 - Artificial adjustment of time and/or intensity delays
- Coincident Microphone Techniques:
 - Two microphones placed as physically close as possible to eliminate timing differences
 - Intensity differences position source
- Spaced Microphone Techniques:
 - Two microphones spaced some distance apart
 - Timing differences position source

Surround Sound (2):

- · Quad microphone:
 - Four microphone elements to capture sound event
 - One microphone per loudspeaker
- Matrixing:
 - Quad recordings consisted of four channels but two channel stereo dominated!
 - Encode four channels into two to use existing stereo transmission medium
 - Decode back into four channels for quad playback

27

Surround Sound (3):

- Ambisonics
 - Conceived as a system capable of accurate 3D sound
 - Capable of encoding sounds in any azimuth direction and vertically
 - "Special" microphone to record sound event
 - Flexible loudspeaker placement
 - Variable number of loudspeakers
 - + Only requires length vs. width ratio of 2:1
 - No one-to-one mapping between mics and loudspeakers ? bigger sweet spot!

31

Simulating Human Sound Localization in a Virtual Environment

Modeling the ITD (1):

- Woodworth's Model:
 - ITD for sound located on azimuth plane
 - Assumes spherical head model, no pinnae

$ITD = \frac{a}{c}(\theta + \sin \theta) \quad , \ .90^* \le \theta \le +90^*$

Modeling the ITD (2):

Kuhn's Model

- ITD for sound located on azimuth plane
- Based on ITD values obtained from "dummy" head
- Separate expression for high and low frequencies

Larcher & Jot's Model

- Spherical head model to predict ITD values
- Accounts for source elevation

Duda's Ellipsoidal Head Model

5 parameters measured from listener's head

Binaural Audio (1):

Recreate a Particular Sound Event

 Reproduce signals at each ear as they would be in original environment

Binaural Recordings

33

35

- Small mics inserted in ear canal of person or "dummy" head to record sound event
 - * Captures audio cues ITD, ILD, reverb., HRTF...
 - Headphone play back ? recreate original event
- Specific to environment which they were made, including source and listener positions

34

36

Binaural Audio (2):

Binaural Synthesis

- I mitate binaural recordings
 - "Process" monaural sound with pair of measured HRTFs corresponding to desired source position
 - * Specific to one particular source/listener position
 - Can also add any environmental effects (reverberation etc.)
 - HRTF measurement has its share of problems!!!

HRTF Measurement (1):

Assume HRTF can be Modeled by LTI system

- To measure HRTF for position p relative to listener:
 Anechoic environment
 - Anechoic environment
 - Probe mics inserted in each ear of listener
 - $\mbox{ * Output "impulse" signal from speaker placed at <math display="inline">\mbox{ p}$
 - Measure response at left and right ear
- Problems with HRTF Measurement Process
 - Each position in 3D space ? unique HRTF
 - Can only sample at discrete locations
 - $\ensuremath{\bullet}$ Long, tedious process, specialized equipment

HRTF Measurement (2):

Generic (Non-individualized) HRTFs

- HRTF for position p differs for each individual but impractical to measure HRTF for each user
- Instead of "individualized" HRTFs, use "nonindividualized" HRTFs measured from:
 - + Anthropomorphic dummy (e.g. KEMAR)
 - + Above average listener
 - * Average response of several listeners
- Several HRTF libraries are available
 - MIT: KEMAR measurements
 - + CIPIC: averaged individuals + KEMAR

37

39

HRTF Synthesis:

Measured HRTFs Form FIR Filter Coefficients

- Signal delivered to left & right ear:
 - Filter monaural sound with corresponding response
 - * When presented to listener, impression of sound at position **p** is obtained

38

40

- Can add reverberation cues
- Performance Will Suffer
 - Non-individualized HRTFs,
 - Handling non-sampled positions interpolation

Reverberation:

- Two Techniques to Add Reverberation:
 - Artificial
 - Present listener with delayed & attenuated versions of sound source
 - · Don't necessarily reflect physical properties
 - Auralization
 - Recreate a particular listening environment
 - Determine "exact" reflection patterns of sound waves using physical or mathematical modeling

Auralization (1):

- Binaural Room Impulse Response (BRIR)
 - Response of a particular room (environment)
 - Measured in similar manner to HRTF or modeled
 - Filtering sound with left & right BRIR response recreates environment

Auralization (2):

Modeling of the BRIR:

- Acoustic scale modeling
 3D scaled models
- Computer & mathematical modeling
 - Wave based: solve wave equation (Helmoholtz equation) to recreate some soundfield
 - Ray based: Trace the paths followed by sound waves emitted by the source

41

Distance Simulation (1):

- Sound Level (Intensity) Scaling
 - Scale sound source level following inverse square law
 Simple, intuitive
 - I nverse square assumes spherical head, no pinna
 - * Perceptual counterpart of intensity ? loudness!

- Equal loudness contours
 - Loudness is frequency dependent

 Lower frequency tones not as loud as higher frequency tones

43

Distance Simulation (2):

- Reverberation
 - Ratio of direct to indirect sound level
 Automatically given when proper reverberation model (simulation) in place
- Binaural Cues
 - May not be required
 - Effect of binaural cues on source distance still open issue!

44

• I LD can change significantly at very close distances

Sound Output:

Headphones vs. Loudspeakers

Headphone Based Displays (1):

Advantages:

47

- High channel separation ? minimal (if any) crosstalk
- I solate listener from external sounds & reverb.
 - Room acoustics or listener's position don't affect
 listener's perception
- Sometimes, only means available for delivering audio

- Aircraft cockpits
- + Multiple user environments
- Where loudspeakers are impractical

Headphone Based Displays (2):

Disadvantages:

- Inside-the-head Localization (I HL)
 - Sounds appear as if they originate inside the head

49

51

- Lack of externalization
- Comfortability
 - Can be cumbersome
 - + Impractical at times & can limit immersion
- Greater rate of localization ambiguities
 - + Front-back confusions
 - May move while listener is wearing them

Headphone Based Displays (3):

Overcoming IHL & Ambiguities:

- Provide listener with "realistic spectral profile of the sound at each ear" ? HRTF, reverberation
- Head movements dynamic cues
- These techniques have their share of problems & may offset any improvements

50

Transaural Audio (1):

- Original Binaural Audio Meant for Headphones
 - Ensured isolation between left/right signal
- Transaural Audio:
 - Binaural audio over loudspeakers
 - Left/right binaural signals to left/right loudspeakers
 - Overcome limitations inherent to headphone displays
 I HL
 - Introduce new major problem
 Crosstalk

Transaural Audio (2):

Crosstalk

- Non-isolation of left/right signals delivered to ears
 Left/right signal heard by right/left ear
 - Delayed & attenuated version of ipsilateral signal arriving at contralateral ear

Transaural Audio (3):

Crosstalk Cancellation to Remove Crosstalk

- Add delayed and inverted version of crosstalk signal to opposite loudspeaker output
- Matrix (frequency domain) solution
 - Single listener
 - * Can generalize to **N** listeners (at least in theory)!

Problems with Crosstalk Cancellation

- In theory great! But in practice:
 - * Rely on HRTFs HRTFs have their own problems!

53

55

* Small sweet spot ? listener must be tracked

Amplitude Panning (1):

Make use of ILD

- Adjust amplitude gain of each loudspeaker signal in a manner to simulate directional properties of ILD
 - Listener perceives virtual image emanating from some position dependant on gain factors

54

56

Various amplitude panning techniques available
 2D & 3D loudspeaker configurations

Amplitude Panning (2):

- 2D Amplitude Panning
 - Two channel stereo
 - Simplest configuration
 - * Position sound source between two loudspeakers
 - Various trigonometric methods to compute gain factors
 - * > 2 loudspeakers, all positioned on same plane
 - Pair-wise amplitude panning ? sound applied to 2 loudspeakers only

Amplitude Panning (3):

- 3D Amplitude Panning
 - > 2 loudspeakers non-coplanar
 - Loudspeakers typically equidistant to listener
 - Similar to pair-wise panning
 Sound applied to a subset of loudspeakers only
 - No general trigonometric solution for arbitrary 3D loudspeaker configurations
 - Gain factor calculation very configuration
 dependant

Amplitude Panning (4):

Vector Base Amplitude Panning (VBAP)

- Arbitrary number of loudspeakers 2D & 3D
 - Sound presented to 1, 2 or 3 loudspeakers only
 - Remaining loudspeakers can provide reflections or diffuse sound (e.g. reverberation)
- Loudspeakers can be placed in any position
 Almost equidistant to listener
- Listening room must not be too reverberant

Amplitude Panning (5):

2D VBAP

- Two channel setup treated as 2D vector base
- * Two unit vectors I₁, I₂ pointing to each loudspeaker
- + Unit vector pointing to virtual source is sum of weighted loudspeaker vectors: p = $g_1l_1 + g_2l_2$
- + Can then solve for weights g_1, g_2

57

 Virtual source positioned anywhere on "active arc" between the two loudspeakers

58

60

Amplitude Panning (6):

- 3D VBAP
 - Unit vectors to 3 loudspeakers (triangle)
 - Unit vector pointing to source is linear combination of these 3 unit vectors
 - * Solve for weights in a similar manner as 2D VBAP

 Virtual source positioned anywhere on "active triangle" between the two loudspeakers

59

Conclusions

Bill Kapralos Auditory Perception and Virtual Environments

Summary (1):

- Spatial Audio Important in any VE!
 - Increases environmental awareness
 - Increases immersion and therefore presence
 - Can enhance perception of video quality
 - At the very least, adds ambience (more "lively")
- Creating Spatial Audio Displays is Difficult!
 - Potentially:
 - * Complex
 - Computationally intensive

Summary (2):

For "True" 3D Sound Simulate Human Cues

- Binaural Cues
 - + Simple to implement
 - + Limited to horizontal plane localization
 - + Ambiguous: cone of confusion, front-back

62

64

Summary (3):

- HRTFs
 - Overcome limitations inherent with binaural cues
 - Externalize a sound source when using headphones
 - + "True" 3D sound capability
 - + Large variation amongst individuals
 - Difficult to measure: time consuming, tedious, specialized equipment (e.g. anechoic chamber)
 - * Potentially large storage capacity
 - Interpolation required for non-sampled positions

Comments:

61

- Finally, How Much "Reality" is Required?
 - Depending on intended application, realism may not be most important consideration
 - Reverb provides more accurate distance judgments but reverb may reduce directional accuracy
 - In entertainment applications complete room acoustics modeling is not necessary – simple artificial reverb techniques usually suffice and save \$\$\$
 - + Headphone vs. loudspeaker based systems

Finally... The End!