## CSE 2001— Winter 2008

## Problem Set No. 2

Posted: February 15, 2008
Due: TBA on the web site
(2) All reports must be typed (except for diagrams). All assignments are due by I. $2: 00 \mathrm{pm}$ on the due date in the course box.

1. The following must be done by faithfully following the proof of Kleene's theorem, namely, that "for any Regular Expression $\alpha$ there is an NFA $M$ such that $L(\alpha)=L(M)$ ".

Start with the regular expression

$$
a(a+b)^{*} a a
$$

over $\{a, b\}$.
(a) (2 MARKS) Construct an NFA that accepts it, using the technique used in the proof of Kleene's theorem. State-diagram notation please!
(b) (2 MARKS) Transform the NFA to a DFA. State-diagram (graph) notation please!
(c) (3 MARKS) Minimise the DFA.
2. (5 MARKS) Provide an algorithm that checks whether or not

$$
(\exists x)\left(x \notin L_{1} \cup L_{2}\right)
$$

for any given regular languages $L_{1}, L_{2}$ and string $x$, all over some fixed $\Sigma$.
3. (10 MARKS) Define for any language $L$ its "initial segment", init $(L)$, by

$$
\begin{equation*}
\operatorname{init}(L)=\{w:(\exists y) w y \in L\} \tag{1}
\end{equation*}
$$

Prove: If $L$ is regular, then so is $\operatorname{init}(L)$. Do so in two ways, (A) and (B):
(A) Assume for some FA $M$ that $L=L(M)$. Using $M$, build, in detail, and justify your design, an FA $N$ such that $\operatorname{init}(L)=L(N)$. "Build" means in terms of $M$. You will explain how $M$ is to be modified to get $N$, no $\underline{\text { matter what } M \text { you started with. }}$

CSE 2001. George Tourlakis. Winter 2008
(B) Assume that $L=L(\alpha)$ for some regular expression $\alpha$. Now use a proof by induction on $\alpha$ 's length.
4. (5 MARKS) By induction on regular expression length prove: "For every $\alpha$, there is a CFG, $G$, such that $L(G)=L(\alpha)$ ".

" $S \rightarrow \emptyset$ " cannot be a rule. $\emptyset$ is a set, not a string, so, it has no business on the rhs of a rule!
5. (5 MARKS) Show that a grammar that mixes regular productions of the forms $A \rightarrow B a$ and $A \rightarrow a B$ may produce a non-regular context free language.
(Hint. Find a simple CFG with mixed productions that generates a CFL that is known not to be regular. As always, unless your grammar obviously produces the language in question, you have to give a good general argument that it does.)
6. (5 MARKS) Find a Chomsky Normal Form grammar for $\left\{0^{n} 1^{4 n}: n \geq 1\right\}$, and then proceed to build, using the method shown in the text or in class, a 2-state PDA that accepts the language by Empty-Stack.

## All steps must be shown.

7. (5 MARKS) Prove that the language over $\{a, b\}$ given by $L=\left\{a^{n} b a^{n^{2}}\right.$ : $n \geq 0\}$ is not a CFL.
