Page 1

Ş

Ş

## CSE 2001—Winter 2008

## Problem Set No. 3 Posted: March 13, 2008 Due: April 7, 2008

- All reports must be typed (except for diagrams). All assignments are due by 2:00pm on the due date in the course box.
  - 1. Prove constructively that if a context free grammar G has only rules of the types  $A \to Ba$  and  $A \to a$ , then L(G) is regular.

*Hint.* Construct an appropriate FA or NFA M and prove L(G) = L(M).

2. Prove that regular languages are closed under reversal, that is, if L is regular then so is

$$L^R \stackrel{\text{by def}}{=} \{x^R : x \in L\}$$

*Hint.* Either use the previous problem, or induction on the length of regular expressions.

**3.** Prove that  $\underline{CFL}$  are also closed under reversal, that is, if L is a CFL then so is  $L^R$ .

Hint. Recommended to use grammars in CNF.

- 4. In class we constructed a ES-PDA M such that  $L(M) = \{0^n 1^n : n \ge 0\}$ . Find (probably by modifying M) an ES-PDA N such that  $L(N) = \{0^n 1^n : n \ge 1\}$ .
- Recall that  $\phi_x$  denotes the function of one argument computed by the Turing Machine,  $M_x$ , found in position x of the "standard" (algorithmic) enumeration of all Turing Machines.
  - **5.** Prove that  $\{x : \operatorname{dom}(\phi_x) = \emptyset\}$  is not decidable.

**Note.** By "dom" we mean "domain", that is, for any function f of one argument

$$\operatorname{dom}(f) = \{x : (\exists z)f(x) = z\}$$

- 6. YES/NO, but with proof please!
  - (a) The problem  $\varepsilon \in L(G)$  is decidable for any CFG G.

CSE 2001. George Tourlakis. Winter 2008

(b) The problem  $0 \in \text{dom}(\phi_x)$  is decidable.

(c) The problem  $0 \in \text{dom}(\phi_x)$  is semi-decidable.

 $\bigotimes$  Rice's Theorem must not be used.



Page 2

CSE 2001. George Tourlakis. Winter 2008