
Page 1 of 5

CSE 4111/5111 —Winter 2014

Posted: Feb 26, 2014

Problem Set No. 1 —Solutions

� This is not a course on formal recursion theory. Your proofs should be informal
(but NOT sloppy), completely argued, correct, and informative (and if possible
short). Please do not trade length for correctness or readability. �

All problems are from the “Theory of Computation Text”, or are improvi-
sations that I completely articulate here.

(1) Dress up the primitive recursion

two(0) = 1
two(x+ 1)= two(x) + two(x) (1)

to make it conform with the rigid primitive recursion schema.

Answer. We employ the same method we followed for p = λx.x .− 1 in the
text/class:

First define

TWO
Def
= λxy.two(x) (2)

Then recast equations (1) with “dressing”, so that the basis is a 1-argument
function and the iterator is a 3-argument function (I omit some brackets in
compositions for visual clarity; e.g., SZx rather than S(Z(x))):

TWO(0, y) = SZy

TWO(x+ 1, y)= add
(
U3
3

(
x, y, TWO(x, y)

)
, U3

3

(
x, y, TWO(x, y)

))
(3)

In (3) we employed add = λxy.x + y that we know (from class/text) is
in PR. Moreover, the “basis” is H = λy.SZy and the iterator is G =

λxyz.add
(
U3
3

(
x, y, z

)
, U3

3

(
x, y, z

))
.

We get two from TWO by composition (identification of variables): two =

λx.TWO(x, x) —or, in slow motion, two = λx.TWO
(
U1
1 (x), U1

1 (x)
)

. �

CSE 4111/5111; Solutions. George Tourlakis. Winter 2014



Page 2 of 5

From Section 2.12.

(2) Do problems 6, 11, 12, 19.

6. Prove that every finite set is primitive recursive.

Proof. Let S = {a1, . . . , an}. We want to show that the predicate x ∈ S
is in PR∗. Well,

x ∈ S ≡ x = a1 ∨ x = a2 ∨ . . . ∨ x = an (1)

Since λxy.x = y is in PR∗, so is λx.x = y, and we are done by closure
of PR∗ under ∨.

Important : The . . . in (1) do not imply a “variable length formula”, since
the number of ∨ terms is fixed, independent of the input value x, that
is. If we had a specific as opposed to “general” S like, say, {a, b, 3, 11}
we would have written (1) as x ∈ S ≡ x = a ∨ x = b ∨ x = 3 ∨ x = 11
without . . . �

11. Prove that if we know that (1) g is primitive recursive; (2) f(~x) ≤ g(~x),
for all ~x; and (3) λz~x.z = f(~x) is in PR∗, then f is primitive recursive.

Proof. This is the general case of the example λn.pn that we know from
class/text:

� Condition (2) forces f to be total (since g is), for if f(~a) ↑ for some
~a, then we cannot have (2) to hold: it requires both sides —f(~a) and
g(~a)— be defined as, say, c and d respectively, and to have c ≤ d. �

But then

f(~x) = (µy)≤g(~x)(y = f(~x))

which proves the primitive recursiveness of f , since h given by h(z, ~x) =
(µy)≤z(y = f(~x)) in in PR by closure under (µy)≤z. f is obtained by
substitution of g(~x) into the variable z in h(z, ~x). �

12. Are the conditions (1) and (2) above necessary in order to arrive to the
same conclusion from just (3)?

As the case of the primitive recursive predicate λnxz.z = An(x) shows,
we need to bound the “output” of our “f” by a primitive recursive
function. This bounding is not available, as we know, in the case of
f = λnx.An(x) and we also know that this f is not in PR. So without
conditions (1) and (2) in 11 above the result cannot go through in all
cases. Necessary conditions!

CSE 4111/5111; Solutions. George Tourlakis. Winter 2014



Page 3 of 5

19. Define

(
◦
µy)≤zf(y, ~x)

Def
=

{
min{y : y ≤ z ∧ f(y, ~x) = 0}
0, if the min does not exist

Prove that PR is closed under (
◦
µy)≤z.

Proof. The easiest thing to do is to piggy back on closure under (µy)≤z

and composition! So,

(
◦
µy)≤zf(y, ~x) = if (µy)≤zf(y, ~x) ≤ z then (µy)≤zf(y, ~x) else 0

settles it! �

(3) Write a “nice and clean” loop program which computes λx.bx/2c. The pro-
gram must only allow instruction-types X ← 0, X ← X + 1, X ← Y and
Loop X . . . end. It must not nest the Loop-end instruction! It is required
that you give a convincing general argument (not a “trace”) as to why your
program works as specified.

Answer. This is related to the rem(x, 2) case we did in class.

We will set up a simultaneous recursion that will readily be translatable
into a Loop program.

So let f = λx.bx/2b. We plot it as a sequence (of outputs) and also plot
the same sequence shifted one position to the left; we call the corresponding
function of the latter g.

f =0,0,1,1,2,2,3,3,4,4,. . .
g =0,1,1,2,2,3,3,4,4,5,. . .

The simultaneous recursion, by inspection, is

f(0) = 0
g(0) = 0

and
f(x+ 1) =g(x)
g(x+ 1) =f(x) + 1

The straightforward translation of the above recursion to a Loop program
only needs us to save the f(x) value in a temporary variable T before it is
changed in the first recurrence equation.

CSE 4111/5111; Solutions. George Tourlakis. Winter 2014



Page 4 of 5

So:

F ← 0
G← 0
LoopX
T ← F
F ← G
G← T + 1

To make the last instruction “legal” we replace it by two:

F ← 0
G← 0
LoopX
T ← F
F ← G
T ← T + 1
G← T

If the last Loop program is called M , then f = MX
F . �

(4) Do problem 27, 28.

27. Show that the set K0 defined as {〈x, y〉 : φx(y) ↓} is semi-computable.

Proof. The question is the same as saying “prove that the predicate

〈x, y〉 ∈ K0 —that is, φx(y) ↓— is semi-computable”.

Easy!
φx(y) ↓≡ (∃z)T (x, y, z)

and we are done by the strong projection theorem since T (x, y, z) is
primitive recursive. �

28. Prove the “definition by recursive cases” theorem R and P. The assump-
tions are:

(1) For the R case, all the fi are in R, while for the P case they all are in
P.

(2) In both cases, the Ri are in R∗ (recursive cases).

The result to prove is that the defined f is in R and P, respectively.

Proof. We have an f given from fi and Ri as follows:

f(~x) =


f1(~x) if R1(~x)

f2(~x) if R2(~x)
...

...

fk(~x) othw

(1)

CSE 4111/5111; Solutions. George Tourlakis. Winter 2014



Page 5 of 5

Since if-then-else is in R and hence P, and both sets are closed under
composition, we are done by rewriting (1) as

f(~x) = if R1(~x) then f1(~x)

else if R2(~x) then f2(~x)

...
...

else if Rk−1(~x) then fk−1(~x)

elsefk(~x)

�

CSE 4111/5111; Solutions. George Tourlakis. Winter 2014


