CSE 4111/5111 —Winter 2014

Posted: Feb 26, 2014

Problem Set No. 1 -Solutions

This is not a course on formal recursion theory. Your proofs should be informal ㅍ. (but NOT sloppy), completely argued, correct, and informative (and if possible short). Please do not trade length for correctness or readability.

All problems are from the "Theory of Computation Text", or are improvisations that I completely articulate here.
(1) Dress up the primitive recursion

$$
\begin{align*}
& t w o(0)=1 \\
& t w o(x+1)=t w o(x)+t w o(x) \tag{1}
\end{align*}
$$

to make it conform with the rigid primitive recursion schema.

Answer. We employ the same method we followed for $p=\lambda x . x \doteq 1$ in the text/class:

First define

$$
\begin{equation*}
T W O \stackrel{\text { Def }}{=} \lambda x y \cdot t w o(x) \tag{2}
\end{equation*}
$$

Then recast equations (1) with "dressing", so that the basis is a 1-argument function and the iterator is a 3 -argument function (I omit some brackets in compositions for visual clarity; e.g., $S Z x$ rather than $S(Z(x))$):

$$
\begin{align*}
& T W O(0, y)=S Z y \\
& T W O(x+1, y)=\operatorname{add}\left(U_{3}^{3}(x, y, T W O(x, y)), U_{3}^{3}(x, y, T W O(x, y))\right) \tag{3}
\end{align*}
$$

In (3) we employed $a d d=\lambda x y \cdot x+y$ that we know (from class/text) is in $\mathcal{P R}$. Moreover, the "basis" is $H=\lambda y \cdot S Z y$ and the iterator is $G=$ $\lambda x y z . a d d\left(U_{3}^{3}(x, y, z), U_{3}^{3}(x, y, z)\right)$.
We get two from $T W O$ by composition (identification of variables): two $=$ $\lambda x \cdot T W O(x, x)-$ or, in slow motion, two $=\lambda x \cdot T W O\left(U_{1}^{1}(x), U_{1}^{1}(x)\right)$.

From Section 2.12.

(2) Do problems 6, 11, 12, 19.
6. Prove that every finite set is primitive recursive.

Proof. Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$. We want to show that the predicate $x \in S$ is in $\mathcal{P} \mathcal{R}_{*}$. Well,

$$
\begin{equation*}
x \in S \equiv x=a_{1} \vee x=a_{2} \vee \ldots \vee x=a_{n} \tag{1}
\end{equation*}
$$

Since $\lambda x y . x=y$ is in $\mathcal{P} \mathcal{R}_{*}$, so is $\lambda x . x=y$, and we are done by closure of $\mathcal{P} \mathcal{R}_{*}$ under \vee.

Important: The . . . in (1) do not imply a "variable length formula", since the number of \vee terms is fixed, independent of the input value x, that is. If we had a specific as opposed to "general" S like, say, $\{a, b, 3,11\}$ we would have written (1) as $x \in S \equiv x=a \vee x=b \vee x=3 \vee x=11$ without...
11. Prove that if we know that (1) g is primitive recursive; (2) $f(\vec{x}) \leq g(\vec{x})$, for all \vec{x}; and (3) $\lambda z \vec{x} . z=f(\vec{x})$ is in $\mathcal{P} \mathcal{R}_{*}$, then f is primitive recursive.

Proof. This is the general case of the example $\lambda n . p_{n}$ that we know from class/text:

2
Condition (2) forces f to be total (since g is), for if $f(\vec{a}) \uparrow$ for some \vec{a}, then we cannot have (2) to hold: it requires both sides $-f(\vec{a})$ and $g(\vec{a})$ - be defined as, say, c and d respectively, and to have $c \leq d$.

But then

$$
f(\vec{x})=(\mu y)_{\leq g(\vec{x})}(y=f(\vec{x}))
$$

which proves the primitive recursiveness of f, since h given by $h(z, \vec{x})=$ $(\mu y)_{\leq z}(y=f(\vec{x}))$ in in $\mathcal{P} \mathcal{R}$ by closure under $(\mu y)_{\leq z} \cdot f$ is obtained by substitution of $g(\vec{x})$ into the variable z in $h(z, \vec{x})$.
12. Are the conditions (1) and (2) above necessary in order to arrive to the same conclusion from just (3)?

As the case of the primitive recursive predicate $\lambda n x z . z=A_{n}(x)$ shows, we need to bound the "output" of our " f " by a primitive recursive function. This bounding is not available, as we know, in the case of $f=\lambda n x . A_{n}(x)$ and we also know that this f is not in $\mathcal{P} \mathcal{R}$. So without conditions (1) and (2) in $\mathbf{1 1}$ above the result cannot go through in all cases. Necessary conditions!

CSE 4111/5111; Solutions. George Tourlakis. Winter 2014
19. Define

$$
(\mu y)_{\leq z} f(y, \vec{x}) \stackrel{\text { Def }}{=}\left\{\begin{array}{l}
\min \{y: y \leq z \wedge f(y, \vec{x})=0\} \\
0, \text { if the min does not exist }
\end{array}\right.
$$

Prove that $\mathcal{P} \mathcal{R}$ is closed under $(\stackrel{\circ}{\mu y})_{\leq z}$.
Proof. The easiest thing to do is to piggy back on closure under $(\mu y)_{\leq z}$ and composition! So,

$$
(\stackrel{\circ}{\mu y})_{\leq z} f(y, \vec{x})=\text { if }(\mu y)_{\leq z} f(y, \vec{x}) \leq z \text { then }(\mu y)_{\leq z} f(y, \vec{x}) \text { else } 0
$$

settles it!
(3) Write a "nice and clean" loop program which computes $\lambda x \cdot\lfloor x / 2\rfloor$. The program must only allow instruction-types $X \leftarrow 0, X \leftarrow X+1, X \leftarrow Y$ and Loop $X \ldots$ end. It must not nest the Loop-end instruction! It is required that you give a convincing general argument (not a "trace") as to why your program works as specified.

Answer. This is related to the $\operatorname{rem}(x, 2)$ case we did in class.
We will set up a simultaneous recursion that will readily be translatable into a Loop program.
So let $f=\lambda x .\lfloor x / 2\lfloor$. We plot it as a sequence (of outputs) and also plot the same sequence shifted one position to the left; we call the corresponding function of the latter g.

$$
\begin{aligned}
& f=0,0,1,1,2,2,3,3,4,4, \ldots \\
& g=0,1,1,2,2,3,3,4,4,5, \ldots
\end{aligned}
$$

The simultaneous recursion, by inspection, is

$$
\begin{aligned}
& f(0)=\quad 0 \\
& g(0)=\quad 0 \\
& \text { and } \\
& f(x+1)=g(x) \\
& g(x+1)= \\
& =f(x)+1
\end{aligned}
$$

The straightforward translation of the above recursion to a Loop program only needs us to save the $f(x)$ value in a temporary variable T before it is changed in the first recurrence equation.

So:

$$
\begin{aligned}
& F \leftarrow 0 \\
& G \leftarrow 0 \\
& \mathbf{L o o p} X \\
& T \leftarrow F \\
& F \leftarrow G \\
& G \leftarrow T+1
\end{aligned}
$$

To make the last instruction "legal" we replace it by two:

$$
\begin{aligned}
& F \leftarrow 0 \\
& G \leftarrow 0 \\
& \mathbf{L o o p} X \\
& T \leftarrow F \\
& F \leftarrow G \\
& T \leftarrow T+1 \\
& G \leftarrow T
\end{aligned}
$$

If the last Loop program is called M, then $f=M_{F}^{X}$.
(4) Do problem 27, 28.
27. Show that the set K_{0} defined as $\left\{\langle x, y\rangle: \phi_{x}(y) \downarrow\right\}$ is semi-computable.

Proof. The question is the same as saying "prove that the predicate $\langle x, y\rangle \in K_{0}$ - that is, $\phi_{x}(y) \downarrow$ - is semi-computable".
Easy!

$$
\phi_{x}(y) \downarrow \equiv(\exists z) T(x, y, z)
$$

and we are done by the strong projection theorem since $T(x, y, z)$ is primitive recursive.
28. Prove the "definition by recursive cases" theorem \mathcal{R} and \mathcal{P}. The assumptions are:
(1) For the \mathcal{R} case, all the f_{i} are in \mathcal{R}, while for the \mathcal{P} case they all are in \mathcal{P}.
(2) In both cases, the R_{i} are in \mathcal{R}_{*} (recursive cases).

The result to prove is that the defined f is in \mathcal{R} and \mathcal{P}, respectively.

Proof. We have an f given from f_{i} and R_{i} as follows:

$$
f(\vec{x})= \begin{cases}f_{1}(\vec{x}) & \text { if } R_{1}(\vec{x}) \tag{1}\\ f_{2}(\vec{x}) & \text { if } R_{2}(\vec{x}) \\ \vdots & \vdots \\ f_{k}(\vec{x}) & \text { othw }\end{cases}
$$

CSE 4111/5111; Solutions. George Tourlakis. Winter 2014

Since if-then-else is in \mathcal{R} and hence \mathcal{P}, and both sets are closed under composition, we are done by rewriting (1) as

$$
\begin{aligned}
& f(\vec{x})=\quad \text { if } R_{1}(\vec{x}) \text { then } f_{1}(\vec{x}) \\
& \text { else if } R_{2}(\vec{x}) \text { then } f_{2}(\vec{x}) \\
& \quad \vdots \\
& \quad \vdots \\
& \quad \text { else if } R_{k-1}(\vec{x}) \text { then } f_{k-1}(\vec{x}) \\
& \quad \text { else } f_{k}(\vec{x})
\end{aligned}
$$

