CSE 4111/5111 —Winter 2014

Posted: March 24, 2014

Problem Set No. 2-Solutions

(1) Do Exercises 2.5.0.30 (p.171) and 2.6.0.33 (p.173).

- 2.5.0.30: Consider a set of mutually exclusive relations $R_{i}(\vec{x}), i=$ $1, \ldots, n$, that is, $R_{i}(\vec{x}) \wedge R_{j}(\vec{x})$ is false for each \vec{x} as long as $i \neq j$.
Then we can define a function f by positive cases R_{i} from given functions f_{j} by the requirement (for all \vec{x}) given below:

$$
f(\vec{x})= \begin{cases}f_{1}(\vec{x}) & \text { if } R_{1}(\vec{x}) \\ f_{2}(\vec{x}) & \text { if } R_{2}(\vec{x}) \\ \ldots & \ldots \\ f_{n}(\vec{x}) & \text { if } R_{n}(\vec{x}) \\ \uparrow & \text { otherwise }\end{cases}
$$

Prove that if each f_{i} is in \mathcal{P} and each of the $R_{i}(\vec{x})$ is in \mathcal{P}_{*}, then $f \in \mathcal{P}$. Hint. Use the graph theorem along with closure properties of \mathcal{P}_{*} relations to examine $y=f(\vec{x})$.

Answer. I'll show that $y=f(\vec{x}) \in \mathcal{P}_{*}$ and will be done by the graph theorem.

Indeed,

$$
\begin{equation*}
y=f(\vec{x}) \equiv y=f_{1}(\vec{x}) \wedge R_{1}(\vec{x}) \vee y=f_{2}(\vec{x}) \wedge R_{2}(\vec{x}) \vee \ldots \vee y=f_{n}(\vec{x}) \wedge R_{n}(\vec{x}) \tag{1}
\end{equation*}
$$

Since all graphs on the rhs of \equiv are in \mathcal{P}_{*} by the assumption on the f_{i} and by the graph theorem, we are done by closure of \mathcal{P}_{*} under \wedge, \vee and the assumption on the R_{i}.
(2) Wait a minute! Aren't we forgetting something like " $y=\uparrow \wedge$ oth" on the rhs? NO! $y=\uparrow$ is meaningless since a variable always holds a number. A number cannot be "undefined". How's this different from $f(\vec{x}) \uparrow$ or $f(\vec{x})=\uparrow$? Well, a function call $f(\vec{x})$ depending on \vec{x} can fail to give a numerical answer (when the program that computes the call never stops with input \vec{x}).

To sum up: $y=f(\vec{x})$ says (by virtue of y being a number) " $f(\vec{x}) \downarrow$ and equals the number y ".

Last observation: The "oth" is NOT a "positive" case! It is the negation of the disjunction of all the others. Isn't it nice that by virtue of the " \uparrow " we do not have to explicitly deal with it!

And, btw, there is no way to do this using if-then-else. The R_{i} 's being NOT necessarily recursive can lead to an infinite loop during evaluation (the no case). Imagine then that, for input \vec{a}, R_{2} is true but all the others are false. Given that the if-then-else is highly sequential -if $R_{1}(\vec{a})$ then $f_{1}(\vec{a})$ else if $R_{2}(\vec{a})$ then $f_{2}(\vec{a})$ else if. . - we will never answer $f_{2}(\vec{a})$, as we ought to do, because we are busy looping forever with $R_{1}(\vec{a})$!

- 2.6.0.33: What is $10 * 5$?

Answer. First, $l h(10)=$ the index of first prime that does not divide 10: That is, 1. Similarly, $\operatorname{lh}(5)=0$, since $p_{0} \not \backslash 5$.

Now, recall

$$
\begin{equation*}
x * y \stackrel{\text { Def }}{=} x \cdot \prod_{i<l h(y)} p_{i+l h(x)}^{\exp (i, y)} \tag{1}
\end{equation*}
$$

Thus,

$$
10 * 5=10 \cdot \prod_{i<l h(5)} p_{i+l h(10)}^{\exp (i, 5)}=10 \cdot \prod_{i<0} p_{i+\operatorname{lh}(10)}^{\exp (i, 5)}=10^{*}
$$

(2) From Section 2.12 (p. 234 and onwards) do: 23, 24, 30, 31, 35, 42.

- \#23: Once again, refer to Subsection 2.2.2 where we constructed the "universal" two-argument function $\lambda y x . f_{y}(x)$ that enumerates all oneargument primitive recursive functions. Prove
- For all $\lambda x . h(x) \in \mathcal{P} \mathcal{R}$, there is a an m such that $h(x)<f_{m}(x)$, for all x.
Answer. Take an m such as $h(x)+1=f_{m}(x)$, all x. Such an m exists because $\lambda x . h(x)+1$ is in $\mathcal{P} \mathcal{R}$ too.
- Base on the preceding bullet a new proof of the fact that $\lambda y x . f_{y}(x) \notin$ \mathcal{P} R.
Answer. Otherwise, $h=\lambda x . f_{x}(x) \in \mathcal{P} \mathcal{R}$. By the previous question there is an m such that

$$
f_{x}(x)<f_{m}(x)
$$

for all x. Taking $x=m$ we see this cannot be!

[^0]
CSE 4111/5111. George Tourlakis. Winter 2014

- \# 24: Prove that it is impossible to form $\mathcal{P} \mathcal{R}$ as the closure under substitution of some finite set of primitive recursive functions.

Answer. Here's why: Suppose that for some $\mathcal{P R}$ functions $\mathscr{I}=$ $\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ we have that $\mathcal{P R}$ is equal to the closure of \mathscr{I} under substitution alone.

Then for some m,

$$
\begin{equation*}
f_{i}(\vec{x}) \leq A_{m}^{k_{i}}(\max \vec{x}) \text { for all } \vec{x} \text { and all } i=1, \ldots, r . \tag{1}
\end{equation*}
$$

Since Ackermann majorisation does not increase the lower index under substitution, we have

$$
\begin{equation*}
g \in \mathrm{Cl}(\mathscr{I}, \text { subst }) \text { implies } g(\vec{y}) \leq A_{m}^{q}(\max \vec{y})^{\dagger} \text { for all } \vec{y} \tag{2}
\end{equation*}
$$

Here's the problem: $\lambda x . A_{m+1}(x) \in \mathcal{P} \mathcal{R}$ as we know. If $\mathcal{P} \mathcal{R}=\mathrm{Cl}(\mathscr{I}$, subst $)$, then -by (2)- we must have

$$
A_{m+1}(x) \leq A_{m}^{h}(x) \text { for some } h \text { and all } x
$$

But this we know is not true $\left(A_{m}^{h}(x)<A_{m+1}(x)\right.$ a.e. is true $)$.

- \# 30: Show that the set K_{1} defined as $\left\{[x, y]: \phi_{x}(y) \downarrow\right\}$ is semicomputable.

Proof. $z \in K_{1} \equiv \operatorname{Seq}(z) \wedge \phi_{(z)_{0}}\left((z)_{1}\right) \downarrow \equiv \operatorname{Seq}(z) \wedge(\exists y) T\left((z)_{0},(z)_{1}, y\right)$ and are done by strong projection and closure properties of \mathcal{P}_{*}.

- \# 31: Show that the set K_{1} defined above is not recursive.

Hint. Caution: Do not confuse coded pair $[x, y]$ with unpacked $\langle x, y\rangle$. K_{1} is $\left\{z: \phi_{(z)_{0}}\left((z)_{1}\right) \downarrow\right\}$ - a set of numbers, not a set of pairs.

Proof. If I can "solve" $\phi_{(z)_{0}}\left((z)_{1}\right) \downarrow$ then I can solve $x \in K$. That is,

$$
K \leq K_{1}
$$

How? Take $f(x)=[x, x]\left(=2^{x+1} 3^{x+1}\right)$, clearly a $\mathcal{P} \mathcal{R}$ function.
Then

$$
x \in K \equiv f(x) \in K_{1}
$$

- \# 35: Prove that neither

$$
f(x)= \begin{cases}0 & \text { if } x \in K \\ 42 & \text { otherwise }\end{cases}
$$

[^1]nor
\[

g(x)= $$
\begin{cases}0 & \text { if } x \in K \\ x & \text { otherwise }\end{cases}
$$
\]

are in \mathcal{P}. This justifies our remarks in the text -about definition by positive cases - that the best we can suggest as "output" in the "otherwise" case is \uparrow. In general.
Why "in general"?

Because if the positive cases are actually recursive (here it is semirecursive but not recursive), then so is the "otherwise" and a function call can correspond to this case rather than " \uparrow " and still have a computable function overall (definition by recursive cases).
Now to the two examples:

- The first: If $f \in \mathcal{P}$ then $f \in \mathcal{R}$ since it is total. But then

$$
x \in K \equiv f(x)=0
$$

making $K \in \mathcal{R}_{*}$ by a well known lemma. But this is absurd.

- The second: Seeing that it is not true that $x \in K \equiv g(x)=0$ because of the x-response in the "otherwise", we need to be more subtle: Note that we have

$$
\begin{equation*}
x+1 \in K \equiv g(x+1)=0 \tag{1}
\end{equation*}
$$

Noting that $\lambda x . g(x+1) \in \mathcal{R}$ by substitution -if we assume $g \in \mathcal{R}$ - we only need to prove that the predicate $x+1 \in K$ is not recursive, so that (1) can contradict the "red" assumption!

Well, if we can compute the answer to

$$
\begin{equation*}
x+1 \in K \tag{2}
\end{equation*}
$$

then
we can compute the answer to $x \in K$
since $0 \notin K($ Why is $0 \notin K ?)$
Informally, to decide $z \in K$, if $z=0$ we say "no" and exit. If $z>0$, then $z=x+1$ for some x and we "call" the (assumed to exist) program for the problem (2).

But (3) cannot be!
Mathematically, if we denote the assumed recursive predicate (2) by $Q(x)$-i.e., to avoid notational confusion we have defined $Q(x) \equiv$ $x+1 \in K$ - then

$$
z \in K \equiv z \neq 0 \wedge Q(z \doteq 1)
$$

CSE 4111/5111. George Tourlakis. Winter 2014

Thus if $Q \in \mathcal{R}_{*}$, then so is K !

- \# 42: Prove that the set $E=\left\{\langle x, y\rangle: \phi_{x}=\phi_{y}\right\}$ is not semi-recursive. Hint. Fix ϕ_{y} to a conveniently simple function.

Comment: This was done in class!

Answer. If $E(x, y) \in \mathcal{P}_{*}$, then so is $E(x, 0)$, that is the set

$$
\left\{x: \phi_{x}=\phi_{0}\right\}
$$

Given that $\phi_{0}=\emptyset$, the above is the set $\left\{x: \phi_{x}=\emptyset\right\}$ which we know from class (recall our reduction arguments!) is not semi-recursive.
(3) From Section 2.12 (p. 237 and onwards) do: 46, 47, 54 without Rice's Theorem!
(2)

None of the $46,47,54$ speak of recursiveness so Rice's Theorem is inapplicable anyway. Rice's Lemma applies to \# 46, but not in any of \# 47 or \# 54 .

- \#46: Prove that the set $A=\left\{x: W_{x}=\{0,1,2\}\right\}$ is not ce.

Here \mathscr{C} is the set of all ϕ_{x} that have exactly $\{0,1,2\}$ as their domain. So, $A=\left\{x: \phi_{x} \in \mathscr{C}\right\}$.

Using Rice's Lemma was not forbidden, so using it we argue like this: First, let

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } x=1 \\ 2 & \text { if } x=2 \\ \uparrow & \text { if } x \geq 3\end{cases}
$$

Clearly $f \in \mathcal{P}$ and $\operatorname{dom}(f)=\{0,1,2\}$ thus $f \in \mathscr{C}$. Now the function $g=\lambda x . x$ extends f but is not in \mathscr{C} since its domain is \mathbb{N}.

By Rice's lemma, $A \notin \mathcal{P}_{*}$.

- \#47: Prove that the set $\left\{x: W_{x}=\mathbb{N}\right\}$ is not ce.

Answer. This set is the same as $A=\left\{x: \operatorname{dom}\left(\phi_{x}\right)=\mathbb{N}\right\}$.
Piggy back on the argument in text/class that we did for the nonc.e. -ness of $\left\{x: \phi_{x}\right.$ is a constant $\}$. We found there an $h \in \mathcal{P} \mathcal{R}$ such that

$$
\phi_{h(x)}= \begin{cases}\lambda y .0 & \text { if } x \in \bar{K} \\ \text { a non constant } & \text { oth }\end{cases}
$$

CSE 4111/5111. George Tourlakis. Winter 2014

Page 6

Note that $h(x) \in A$ precisely in the top case. Thus $h(x) \in \bar{K} \equiv x \in A$, that is, $A \leq \bar{K}$ and we are done.

- \#54: Prove that $Q=\left\{x: \phi_{x} \in \mathcal{P} \mathcal{R}\right\}$ is not c.e.

Answer. The " ψ " we used in class to show that $A=\left\{x: \phi_{x}\right.$ is a constant $\}$ is not c.e. once again works as is, since it led to

$$
\phi_{h(x)}= \begin{cases}\lambda y .0 & \text { if } \phi_{x}(x) \uparrow \\ \text { a finite function } & \text { oth }\end{cases}
$$

Note that the top function is in $\mathcal{P R}$ but the bottom is not. Thus, $x \in \bar{K} \equiv h(x) \in Q$, i.e., $\bar{K} \leq_{m} Q$.

[^0]: *The empty product equals 1 .

[^1]: ${ }^{\dagger}$ same m as in (1)!!

