Page 1

CSE 4111/5111 —Winter 2014

Posted: March 24, 2014

Problem Set No. 2—Solutions

- (1) Do Exercises 2.5.0.30 (p.171) and 2.6.0.33 (p.173).
 - 2.5.0.30: Consider a set of mutually exclusive relations R_i(x), i = 1,...,n, that is, R_i(x) ∧ R_j(x) is false for each x as long as i ≠ j. Then we can define a function f by positive cases R_i from given functions f_j by the requirement (for all x) given below:

$$f(\vec{x}) = \begin{cases} f_1(\vec{x}) & \text{if } R_1(\vec{x}) \\ f_2(\vec{x}) & \text{if } R_2(\vec{x}) \\ \dots & \dots \\ f_n(\vec{x}) & \text{if } R_n(\vec{x}) \\ \uparrow & \text{otherwise} \end{cases}$$

Prove that if each f_i is in \mathcal{P} and each of the $R_i(\vec{x})$ is in \mathcal{P}_* , then $f \in \mathcal{P}$. *Hint.* Use the graph theorem along with closure properties of \mathcal{P}_* relations to examine $y = f(\vec{x})$.

Answer. I'll show that $y = f(\vec{x}) \in \mathcal{P}_*$ and will be done by the graph theorem.

Indeed,

$$y = f(\vec{x}) \equiv y = f_1(\vec{x}) \land R_1(\vec{x}) \lor y = f_2(\vec{x}) \land R_2(\vec{x}) \lor \ldots \lor y = f_n(\vec{x}) \land R_n(\vec{x})$$
(1)

Since all graphs on the rhs of \equiv are in \mathcal{P}_* by the assumption on the f_i and by the graph theorem, we are done by closure of \mathcal{P}_* under \wedge, \vee and the assumption on the R_i .

Wait a minute! Aren't we forgetting something like " $y = \uparrow \land$ oth" on the rhs? NO! $y = \uparrow$ is meaningless since a variable always holds a number. A number cannot be "undefined". How's this different from $f(\vec{x}) \uparrow$ or $f(\vec{x}) = \uparrow$? Well, a function call $f(\vec{x})$ depending on \vec{x} can fail to give a numerical answer (when the program that computes the call never stops with input \vec{x}).

Ş

To sum up: $y = f(\vec{x})$ says (by virtue of y being a number) " $f(\vec{x}) \downarrow$ and equals the number y".

Last observation: The "oth" is **NOT** a "positive" case! It is the negation of the disjunction of all the others. Isn't it nice that by virtue of the " \uparrow " we do not have to explicitly deal with it!

And, btw, there is **no way** to do this using if-then-else. The R_i 's being **NOT** necessarily recursive can lead to an infinite loop during evaluation (the no case). Imagine then that, for input \vec{a} , R_2 is true but all the others are false. Given that the if-then-else is **highly sequential** —if $R_1(\vec{a})$ then $f_1(\vec{a})$ else if $R_2(\vec{a})$ then $f_2(\vec{a})$ else if... we will never answer $f_2(\vec{a})$, as we ought to do, because we are busy looping forever with $R_1(\vec{a})$!

• 2.6.0.33: What is 10 * 5?

Answer. First, lh(10) = the index of first prime that does not divide 10: That is, 1. Similarly, <math>lh(5) = 0, since $p_0 \not| 5$.

Now, recall

$$x * y \stackrel{\text{Def}}{=} x \cdot \prod_{i < lh(y)} p_{i+lh(x)}^{\exp(i,y)} \tag{1}$$

Thus,

$$10*5 = 10 \cdot \prod_{i < lh(5)} p_{i+lh(10)}^{\exp(i,5)} = 10 \cdot \prod_{i < 0} p_{i+lh(10)}^{\exp(i,5)} = 10^*$$

- (2) From Section 2.12 (p.234 and onwards) do: 23, 24, 30, 31, 35, 42.
 - #23: Once again, refer to Subsection 2.2.2 where we constructed the "universal" two-argument function $\lambda yx.f_y(x)$ that enumerates all one-argument primitive recursive functions. Prove
 - For all $\lambda x.h(x) \in \mathcal{PR}$, there is a an *m* such that $h(x) < f_m(x)$, for all *x*.

Answer. Take an *m* such as $h(x) + 1 = f_m(x)$, all *x*. Such an *m* exists because $\lambda x \cdot h(x) + 1$ is in \mathcal{PR} too.

- Base on the preceding bullet a new proof of the fact that $\lambda yx. f_y(x) \notin \mathcal{PR}$.

Answer. Otherwise, $h = \lambda x f_x(x) \in \mathcal{PR}$. By the previous question there is an *m* such that

$$f_x(x) < f_m(x)$$

for all x. Taking x = m we see this cannot be!

^{*}The empty product equals 1.

• # 24: Prove that it is impossible to form \mathcal{PR} as the closure under *substitution* of some *finite* set of primitive recursive functions.

Answer. Here's why: Suppose that for some \mathcal{PR} functions $\mathscr{I} = \{f_1, f_2, \ldots, f_r\}$ we have that \mathcal{PR} is equal to the closure of \mathscr{I} under substitution alone.

Then for some m,

$$f_i(\vec{x}) \le A_m^{k_i}(\max \vec{x}) \text{ for all } \vec{x} \text{ and all } i = 1, \dots, r.$$
(1)

Since Ackermann majorisation does not increase the lower index under substitution, we have

$$g \in \operatorname{Cl}(\mathscr{I}, \operatorname{subst}) \text{ implies } g(\vec{y}) \leq A_m^q (\max \vec{y})^{\dagger} \text{ for all } \vec{y}$$
 (2)

Here's the problem: $\lambda x.A_{m+1}(x) \in \mathcal{PR}$ as we know. If $\mathcal{PR} = \mathrm{Cl}(\mathscr{I}, \mathrm{subst})$, then —by (2)— we must have

 $A_{m+1}(x) \leq A_m^h(x)$ for some h and all x

But this we know is not true $(A_m^h(x) < A_{m+1}(x)$ a.e. is true).

• # 30: Show that the set K_1 defined as $\{[x, y] : \phi_x(y) \downarrow\}$ is semicomputable.

Proof. $z \in K_1 \equiv Seq(z) \land \phi_{(z)_0}((z)_1) \downarrow \equiv Seq(z) \land (\exists y)T((z)_0, (z)_1, y)$ and are done by strong projection and closure properties of \mathcal{P}_* . \Box

• # 31: Show that the set K_1 defined above is *not* recursive. *Hint.* Caution: Do not confuse coded pair [x, y] with unpacked $\langle x, y \rangle$. K_1 is $\{z : \phi_{(z)_0}((z)_1) \downarrow\}$ —a set of numbers, not a set of pairs.

Proof. If I can "solve" $\phi_{(z)_0}((z)_1) \downarrow$ then I can solve $x \in K$. That is,

$$K \leq K_1$$

How? Take $f(x) = [x, x](= 2^{x+1}3^{x+1})$, clearly a \mathcal{PR} function. Then

$$x \in K \equiv f(x) \in K_1$$

• # 35: Prove that neither

$$f(x) = \begin{cases} 0 & \text{if } x \in K \\ 42 & \text{otherwise} \end{cases}$$

[†]same m as in (1)!!

CSE 4111/5111. George Tourlakis. Winter 2014

nor

$$g(x) = \begin{cases} 0 & \text{if } x \in K \\ x & \text{otherwise} \end{cases}$$

are in \mathcal{P} . This justifies our remarks in the text —about definition by positive cases— that the best we can suggest as "output" in the "otherwise" case is \uparrow . In general.

Why "in general"?

Because if the positive cases are actually recursive (here it is semirecursive but not recursive), then so is the "otherwise" and a function call can correspond to this case rather than " \uparrow " and still have a computable function overall (definition by recursive cases).

Now to the two examples:

- The first: If $f \in \mathcal{P}$ then $f \in \mathcal{R}$ since it is total. But then

$$x \in K \equiv f(x) = 0$$

making $K \in \mathcal{R}_*$ by a well known lemma. But this is absurd.

- The second: Seeing that it is not true that $x \in K \equiv g(x) = 0$ because of the *x*-response in the "otherwise", we need to be more subtle: Note that we have

$$x+1 \in K \equiv g(x+1) = 0 \tag{1}$$

Noting that $\lambda x.g(x + 1) \in \mathcal{R}$ by substitution —if we assume $g \in \mathcal{R}$ — we only need to prove that the predicate $x + 1 \in K$ is not recursive, so that (1) can contradict the "red" assumption!

Well, if we can compute the answer to

$$x + 1 \in K \tag{2}$$

(3)

then

we can compute the answer to $x \in K$

since $0 \notin K$ (Why is $0 \notin K$?)

Informally, to decide $z \in K$, if z = 0 we say "no" and exit. If z > 0, then z = x + 1 for some x and we "call" the (assumed to exist) program for the problem (2).

But (3) cannot be!

Mathematically, if we denote the **assumed recursive** predicate (2) by Q(x)—i.e., to avoid notational confusion we have defined $Q(x) \equiv x + 1 \in K$ — then

$$z \in K \equiv z \neq 0 \land Q(z - 1)$$

Thus if $Q \in \mathcal{R}_*$, then so is K!

 # 42: Prove that the set E = {⟨x, y⟩ : φ_x = φ_y} is not semi-recursive. *Hint.* Fix φ_y to a conveniently simple function.

Comment: This was done in class!

Answer. If $E(x, y) \in \mathcal{P}_*$, then so is E(x, 0), that is the set

$$\{x:\phi_x=\phi_0\}$$

Given that $\phi_0 = \emptyset$, the above is the set $\{x : \phi_x = \emptyset\}$ which we know from class (recall our reduction arguments!) is not semi-recursive.

- (3) From Section 2.12 (p.237 and onwards) do: 46, 47, 54 without Rice's Theorem!
- None of the 46, 47, 54 speak of recursiveness so Rice's Theorem is inapplicable anyway. Rice's Lemma applies to # 46, but not in any of # 47 or # 54.
 - #46: Prove that the set $A = \{x : W_x = \{0, 1, 2\}\}$ is not c.e.

Here \mathscr{C} is the set of all ϕ_x that have exactly $\{0, 1, 2\}$ as their domain. So, $A = \{x : \phi_x \in \mathscr{C}\}.$

Using Rice's **Lemma** was not forbidden, so using it we argue like this: First, let

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x = 1\\ 2 & \text{if } x = 2\\ \uparrow & \text{if } x \ge 3 \end{cases}$$

Clearly $f \in \mathcal{P}$ and dom $(f) = \{0, 1, 2\}$ thus $f \in \mathscr{C}$. Now the function $g = \lambda x.x$ extends f but is not in \mathscr{C} since its domain is \mathbb{N} .

By Rice's lemma, $A \notin \mathcal{P}_*$.

Ş

• #47: Prove that the set $\{x : W_x = \mathbb{N}\}$ is not c.e.

Answer. This set is the same as $A = \{x : \operatorname{dom}(\phi_x) = \mathbb{N}\}.$

Piggy back on the argument in text/class that we did for the nonc.e.-ness of $\{x : \phi_x \text{ is a constant}\}$. We found there an $h \in \mathcal{PR}$ such that

$$\phi_{h(x)} = \begin{cases} \lambda y.0 & \text{if } x \in \overline{K} \\ \text{a non constant} & \text{oth} \end{cases}$$

Note that $h(x) \in A$ precisely in the top case. Thus $h(x) \in \overline{K} \equiv x \in A$, that is, $A \leq \overline{K}$ and we are done.

• #54: Prove that $Q = \{x : \phi_x \in \mathcal{PR}\}$ is not c.e.

Answer. The " ψ " we used in class to show that $A = \{x : \phi_x \text{ is a constant}\}$ is not c.e. once again works as is, since it led to

$$\phi_{h(x)} = \begin{cases} \lambda y.0 & \text{if } \phi_x(x) \uparrow \\ \text{a finite function} & \text{oth} \end{cases}$$

Note that the top function is in \mathcal{PR} but the bottom is not. Thus, $x \in \overline{K} \equiv h(x) \in Q$, i.e., $\overline{K} \leq_m Q$.