
Page 1

CSE 4111/5111 —Winter 2014

Posted: March 24, 2014

Problem Set No. 2—Solutions

(1) Do Exercises 2.5.0.30 (p.171) and 2.6.0.33 (p.173).

• 2.5.0.30: Consider a set of mutually exclusive relations Ri(~x), i =
1, . . . , n, that is, Ri(~x) ∧Rj(~x) is false for each ~x as long as i 6= j.

Then we can define a function f by positive cases Ri from given func-
tions fj by the requirement (for all ~x) given below:

f(~x) =

f1(~x) if R1(~x)

f2(~x) if R2(~x)

.

fn(~x) if Rn(~x)

↑ otherwise

Prove that if each fi is in P and each of the Ri(~x) is in P∗, then f ∈ P.

Hint. Use the graph theorem along with closure properties of P∗ rela-
tions to examine y = f(~x).

Answer. I’ll show that y = f(~x) ∈ P∗ and will be done by the graph
theorem.

Indeed,

y = f(~x) ≡ y = f1(~x)∧R1(~x)∨y = f2(~x)∧R2(~x)∨. . .∨y = fn(~x)∧Rn(~x)
(1)

Since all graphs on the rhs of ≡ are in P∗ by the assumption on the
fi and by the graph theorem, we are done by closure of P∗ under ∧,∨
and the assumption on the Ri.

� Wait a minute! Aren’t we forgetting something like “y =↑ ∧ oth”
on the rhs? NO! y =↑ is meaningless since a variable always holds a
number. A number cannot be “undefined”. How’s this different from
f(~x) ↑ or f(~x) =↑? Well, a function call f(~x) depending on ~x can fail
to give a numerical answer (when the program that computes the call
never stops with input ~x).

CSE 4111/5111. George Tourlakis. Winter 2014

Page 2

To sum up: y = f(~x) says (by virtue of y being a number) “f(~x) ↓ and
equals the number y”.

Last observation: The “oth” is NOT a “positive” case! It is the nega-
tion of the disjunction of all the others. Isn’t it nice that by virtue of
the “↑” we do not have to explicitly deal with it!

And, btw, there is no way to do this using if-then-else. The Ri’s being
NOT necessarily recursive can lead to an infinite loop during evalua-
tion (the no case). Imagine then that, for input ~a, R2 is true but all
the others are false. Given that the if-then-else is highly sequential
—if R1(~a) then f1(~a) else if R2(~a) then f2(~a) else if. . . — we will never
answer f2(~a), as we ought to do, because we are busy looping forever
with R1(~a)! �

• 2.6.0.33: What is 10 ∗ 5?

Answer. First, lh(10) = the index of first prime that does not divide
10: That is, 1. Similarly, lh(5) = 0, since p0 6 | 5.

Now, recall

x ∗ y Def
= x ·

∏
i<lh(y)

p
exp(i,y)
i+lh(x) (1)

Thus,

10 ∗ 5 = 10 ·
∏

i<lh(5)

p
exp(i,5)
i+lh(10) = 10 ·

∏
i<0

p
exp(i,5)
i+lh(10) = 10∗

(2) From Section 2.12 (p.234 and onwards) do: 23, 24, 30, 31, 35, 42.

• #23: Once again, refer to Subsection 2.2.2 where we constructed the
“universal” two-argument function λyx.fy(x) that enumerates all one-
argument primitive recursive functions. Prove

– For all λx.h(x) ∈ PR, there is a an m such that h(x) < fm(x), for
all x.
Answer. Take an m such as h(x) + 1 = fm(x), all x. Such an m
exists because λx.h(x) + 1 is in PR too.

– Base on the preceding bullet a new proof of the fact that λyx.fy(x) /∈
PR.
Answer. Otherwise, h = λx.fx(x) ∈ PR. By the previous ques-
tion there is an m such that

fx(x) < fm(x)

for all x. Taking x = m we see this cannot be! �
∗The empty product equals 1.

CSE 4111/5111. George Tourlakis. Winter 2014

Page 3

• # 24: Prove that it is impossible to form PR as the closure under
substitution of some finite set of primitive recursive functions.

Answer. Here’s why: Suppose that for some PR functions I =
{f1, f2, . . . , fr} we have that PR is equal to the closure of I under
substitution alone.

Then for some m,

fi(~x) ≤ Aki
m(max ~x) for all ~x and all i = 1, . . . , r. (1)

Since Ackermann majorisation does not increase the lower index under
substitution, we have

g ∈ Cl(I , subst) implies g(~y) ≤ Aq
m(max ~y)† for all ~y (2)

Here’s the problem: λx.Am+1(x) ∈ PR as we know. If PR = Cl(I , subst),
then —by (2)— we must have

Am+1(x) ≤ Ah
m(x) for some h and all x

But this we know is not true (Ah
m(x) < Am+1(x) a.e. is true).

• # 30: Show that the set K1 defined as {[x, y] : φx(y) ↓} is semi-
computable.

Proof. z ∈ K1 ≡ Seq(z) ∧ φ(z)0((z)1) ↓≡ Seq(z) ∧ (∃y)T ((z)0, (z)1, y)
and are done by strong projection and closure properties of P∗. �

• # 31: Show that the set K1 defined above is not recursive.

Hint. Caution: Do not confuse coded pair [x, y] with unpacked 〈x, y〉.
K1 is {z : φ(z)0((z)1) ↓} —a set of numbers, not a set of pairs.

Proof. If I can “solve” φ(z)0((z)1) ↓ then I can solve x ∈ K. That is,

K ≤ K1

How? Take f(x) = [x, x](= 2x+13x+1), clearly a PR function.

Then
x ∈ K ≡ f(x) ∈ K1

�

• # 35: Prove that neither

f(x) =

{
0 if x ∈ K
42 otherwise

†same m as in (1)!!

CSE 4111/5111. George Tourlakis. Winter 2014

Page 4

nor

g(x) =

{
0 if x ∈ K
x otherwise

are in P. This justifies our remarks in the text —about definition
by positive cases— that the best we can suggest as “output” in the
“otherwise” case is ↑. In general.

Why “in general”?

Because if the positive cases are actually recursive (here it is semi-
recursive but not recursive), then so is the “otherwise” and a function
call can correspond to this case rather than “↑” and still have a com-
putable function overall (definition by recursive cases).

Now to the two examples:

– The first: If f ∈ P then f ∈ R since it is total. But then

x ∈ K ≡ f(x) = 0

making K ∈ R∗ by a well known lemma. But this is absurd.

– The second: Seeing that it is not true that x ∈ K ≡ g(x) = 0
because of the x-response in the “otherwise”, we need to be more
subtle: Note that we have

x+ 1 ∈ K ≡ g(x+ 1) = 0 (1)

Noting that λx.g(x + 1) ∈ R by substitution —if we assume
g ∈ R— we only need to prove that the predicate x+1 ∈ K
is not recursive, so that (1) can contradict the “red” assumption!

Well, if we can compute the answer to

x+ 1 ∈ K (2)

then
we can compute the answer to x ∈ K (3)

since 0 /∈ K (Why is 0 /∈ K?)

Informally, to decide z ∈ K, if z = 0 we say “no” and exit. If
z > 0, then z = x + 1 for some x and we “call” the (assumed to
exist) program for the problem (2).

But (3) cannot be!

Mathematically, if we denote the assumed recursive predicate (2)
byQ(x) —i.e., to avoid notational confusion we have definedQ(x) ≡
x+ 1 ∈ K— then

z ∈ K ≡ z 6= 0 ∧Q(z .− 1)

CSE 4111/5111. George Tourlakis. Winter 2014

Page 5

Thus if Q ∈ R∗, then so is K!

• # 42: Prove that the set E = {〈x, y〉 : φx = φy} is not semi-recursive.

Hint. Fix φy to a conveniently simple function.

Comment: This was done in class!

Answer. If E(x, y) ∈ P∗, then so is E(x, 0), that is the set

{x : φx = φ0}

Given that φ0 = ∅, the above is the set {x : φx = ∅} which we know
from class (recall our reduction arguments!) is not semi-recursive.

(3) From Section 2.12 (p.237 and onwards) do: 46, 47, 54 without Rice’s
Theorem!

� None of the 46, 47, 54 speak of recursiveness so Rice’s Theorem is inappli-
cable anyway. Rice’s Lemma applies to # 46, but not in any of # 47 or
54. �

• #46: Prove that the set A = {x : Wx = {0, 1, 2}} is not c.e.

Here C is the set of all φx that have exactly {0, 1, 2} as their domain.
So, A = {x : φx ∈ C }.

Using Rice’s Lemma was not forbidden, so using it we argue like this:

First, let

f(x) =

0 if x = 0

1 if x = 1

2 if x = 2

↑ if x ≥ 3

Clearly f ∈ P and dom(f) = {0, 1, 2} thus f ∈ C . Now the function
g = λx.x extends f but is not in C since its domain is N.

By Rice’s lemma, A /∈ P∗. �

• #47: Prove that the set {x : Wx = N} is not c.e.

Answer. This set is the same as A = {x : dom(φx) = N}.
Piggy back on the argument in text/class that we did for the non-
c.e.-ness of {x : φx is a constant}. We found there an h ∈ PR such
that

φh(x) =

{
λy.0 if x ∈ K
a non constant oth

CSE 4111/5111. George Tourlakis. Winter 2014

Page 6

Note that h(x) ∈ A precisely in the top case. Thus h(x) ∈ K ≡ x ∈ A,
that is, A ≤ K and we are done.

• #54: Prove that Q = {x : φx ∈ PR} is not c.e.

Answer. The “ψ” we used in class to show thatA = {x : φx is a constant}
is not c.e. once again works as is, since it led to

φh(x) =

{
λy.0 if φx(x) ↑
a finite function oth

Note that the top function is in PR but the bottom is not. Thus,
x ∈ K ≡ h(x) ∈ Q, i.e., K ≤m Q.

CSE 4111/5111. George Tourlakis. Winter 2014

