Page 1

Ş

COSC 4111/5111; Solutions —Winter 2014

Posted: April 14, 2014

Problem Set No. 3 —Solutions

- This is not a course on *formal* recursion theory. Your proofs should be informal (but \neq sloppy), correct, and informative (and if possible short). Please do not trade length for correctness or readability.
 - (1) Without using Rice's theorem or lemma, explore/prove
 - (a) the set $A = \{x : ran(\phi_x) \text{ has exactly five distinct elements}\}$ is not recursive. (I.e., " $x \in A$ is unsolvable"). Is it r.e.? Why?

Answer. Let us skip to proving non-r.e.-ness from which non recursiveness also follows:

Define

.

$$\xi(x,y) = \begin{cases} rem(y,5) & \text{if } \phi_x(x) \not\downarrow \text{ in } \leq y \text{ steps} \\ y & \text{otherwise} \end{cases}$$

We know that $\xi \in \mathcal{R}$, so let $h \in \mathcal{PR}$ such that $\xi(x, y) = \phi_{h(x)}(y)$ for all x, y. Thus, by our familiar analysis (see case of $\{x : \phi_x \text{ is a constant function }\}$ in text/class notes),

$$\phi_{h(x)} = \begin{cases} \lambda y.rem(y,5) & \text{if } x \in \overline{K} \\ 0,1,2,3,4,0,1,2,3,4,\dots,y_0,y_0+1,y_0+2,\dots & \text{otherwise} \end{cases}$$

where y_0 depends on x and is the first y-value such that $\phi_x(x) \downarrow$ in y steps. Clearly only the condition $x \in \overline{K}$ leads to a range of $\phi_{h(x)}$ with exactly 5 elements; the other condition $(x \in K)$ leads to infinite range. Thus $\overline{K} \leq A$ via this h.

(b) the set $D = \{x : \phi_x \text{ is the characteristic function of some set}\}$ is not recursive. Is it r.e.? Why?.

Answer. We use the ψ defined for the case $\{x : \phi_x \text{ is a constant function}\}$ in the text/class notes.

$$\psi(x,y) = \begin{cases} 0 & \text{if } \phi_x(x) \not\downarrow \text{ in } \leq y \text{ steps} \\ \uparrow & \text{otherwise} \end{cases}$$

We know that $\psi \in \mathcal{P}$ using def. by pos. cases, so let $\sigma \in \mathcal{PR}$ such that $\psi(x, y) = \phi_{\sigma(x)}(y)$ for all x, y. Thus

$$\phi_{\sigma(x)} = \begin{cases} \lambda y.0 & \text{if } x \in \overline{K} \\ \underbrace{\langle 0, 0, \dots, 0 \rangle}_{y_0 \text{ zeros}} & \text{otherwise} \end{cases}$$

where y_0 depends on x and is the first y-value such that $\phi_x(x) \downarrow$ in y steps. Clearly only the condition $x \in \overline{K}$ leads to a characteristic function (the one for \mathbb{N}); the other condition $(x \in K)$ leads to a finite function which is NOT characteristic (char. functions are total). Thus $\overline{K} \leq D$ via this σ .

- So D is neither r.e. nor recursive.
- (c) the set $E = \{x : ran(\phi_x) \text{ contains only odd numbers}\}$ is not recursive. Is it r.e.? Why?

Answer. It is not r.e. hence nor recursive:

Define

$$g(x,y) = \begin{cases} 1 & \text{if } \phi_x(x) \not\downarrow \text{ in } \leq y \text{ steps} \\ 2 & \text{otherwise} \end{cases}$$

As we know from class, $g \in \mathcal{P}$, in fact, in \mathcal{R} . Thus, for some $\tau \in \mathcal{PR}$,

$$\phi_{\tau(x)} = \begin{cases} \lambda y.1 & \text{if } x \in \overline{K} \\ \langle 1, \dots, 1 \\ y_0 \text{ ones} \end{cases}$$
(2)

where y_0 is the smallest number of steps it takes to have $\phi_x(x) \downarrow$. Only in the top case ran $(\phi_{\tau(x)})$ contains only odd numbers. Thus, $\overline{K} \leq E$.

(2) Prove that there is a function $f \in \mathcal{P}$ such that $W_x \neq \emptyset$ implies $f(x) \downarrow$ and $f(x) \in W_x$.

Hint. To define f(x) you want, given the verifier x (for W_x), to dovetail its computation as follows: consider systematically all pairs $\langle y, z \rangle$ until T(x, y, z) holds. If so, set f(x) = y (if not, go happily forever; this is the case $W_x = \emptyset$). Make this mathematically precise!

Answer. Thanks for the hint :-)

So, here it goes:

$$f(x) = \left((\mu z) T(x, (z)_0, (z)_1) \right)_0$$

(3) Do Exercise 5.2.0.32, p.359.

In view of the bounding lemma, prove that *switch* (the "full" if-then-else) and max are *not* in \mathcal{E}^0 .

Answer. If $sw \in \mathcal{E}^0$ then one of the following must hold:

- For some k, $sw(x, y, z) \le x + k$ for all x, y, z. Take y = k + 1 and x = 0 to get a contradiction.
- For some k, $sw(x, y, z) \le y + k$ for all x, y, z. Take z = y + k + 1 and x = 1 to get a contradiction.
- For some k, $sw(x, y, z) \le z + k$ for all x, y, z. Take y = z + k + 1 and x = 0 to get a contradiction.

If $max \in \mathcal{E}^0$ then one of the following must hold:

- For some k, $\max(x, y) \le x + k$ for all x, y. Take y = x + k + 1 to get a contradiction.
- For some k, $\max(x, y) \le y + k$ for all x, y. Take x = y + k + 1 to get a contradiction.
- (4) From Section 5.3 do Problem 23.

#23: Prove that $T \in \mathcal{E}^3_*$ and $d \in \mathcal{E}^3$.

Proof. We systematically scan the proof that $T \in \mathcal{PR}_*$ contained in the text and modify it to obtain this sharper result.

What properties and functions/predicates from $\mathcal{PR}/\mathcal{PR}_*$ did we use in the proof that

$$URM(z), Comp^{(n)}(z, y)$$
 —and therefore $T^{(n)}(x, \vec{y}_n, z)$ (1)

are in \mathcal{PR}_* ?

First of all, we used closure properties of \mathcal{PR}_* (Boolean and bounded quantification) and of \mathcal{PR} , including closure under $(\mu y)_{\leq z}$. Even though we used $(\mu y)_{\leq z}$ in \mathcal{PR} , the favourite of the \mathcal{E}^n classes $-(\mathring{\mu} y)_{\leq z}$ — works equally well as it can trivially be verified.

Key functions/predicates in the definition of the predicates in (1) were:

 $\lambda xy.\lfloor x/y \rfloor$, exponentials (x^y) —in particular $\lambda nx.p_n^x$ — prime-power coding / decoding and its tools: $[\cdots], Seq(z), lh, (z)_i$.

To get $\lambda n x. p_n^x$ in \mathcal{E}^3 is easy:

- Since + and times are in \mathcal{E}^3 (and earlier), Pr(x) is in \mathcal{E}^3_* by closure properties and the fact that x|y is no more than $(\exists z)_{\leq y} y = xz$.
- We get $\lambda n.p_n$ in \mathcal{E}^3 , the very same way we did it for \mathcal{PR} : $\pi(x)$ first (the recursion is bounded —by x trivially; π is even in \mathcal{E}^0), then $y = p_n$ (in \mathcal{E}^0_* and hence in \mathcal{E}^3_*), and then obtain $\lambda n.p_n$ as

$$p_n = (\check{\mu}y)_{<2^{2^{n+1}}}y = p_n$$

Note that 2^x is in \mathcal{E}^3 as we have a well-known trivial recursion with iterator x + y, and 2^x is bounded by $A_2^k(x)$, for an appropriate k.

• Get x^y . Use the obvious recursion that is based on "times" (the latter already in \mathcal{E}^2), and note the bounding $x^y \leq 2^{xy}$ —for a verification of the inequality note the equivalent inequality

$$y \log_2 x \le xy$$

which is clearly true since $\log_2 x \leq x$.

- Thus we have (omitting λ) p_n^z in \mathcal{E}^3 by substituting p_n into x in x^z .
- From the text, \mathcal{E}^3 is closed under $\sum_{\leq z}$ and $\prod_{\leq z}$ (5.2.0.33 and 5.2.0.34, pp. 359–360)
- Armed with the above, $[x_0, x_1, \ldots, x_n] = \prod_{i \leq n} p_i^{x_i+1}$ is in \mathcal{E}^3 for exactly the same reasons it is in \mathcal{PR} .

Thus the following are also in \mathcal{E}^3 for exactly the same reasons they are in \mathcal{PR} (proofs exactly as in the case of \mathcal{PR} except that we now employ $(\stackrel{\circ}{\mu}y)_{\leq z}$ rather than $(\mu y)_{\leq z}$):

- (i) $\lambda xy \lfloor x/y \rfloor$ —this is used in the yield(z, u, v) predicate employed in the definition of $Comp^{(n)}(z, y)$
- (ii) $\lambda xy. \exp(x, y)$
- (iii) $\lambda xy.(y)_x$
- (iv) $\lambda x.lh(x)$

Now let us look at 2.3.03 first (primitive recursiveness of URM(z)). Given the above bullets the argument there shows **also** that $URM(z) \in \mathcal{E}^3_*$.

Turning to $Comp^{(n)}(z, y)$, we see no tool used there that we did not establish above as being in \mathcal{E}^3 or \mathcal{E}^3_*

In the proof of 2.3.0.7 (Kleene T-predicate) nothing new was done. So $T^{(n)} \in \mathcal{E}^3_*$. As for the decoding function d it is given by

$$d(y) = \left((y)_{lh(y)-1} \right)_1$$

and we are done by bullet (iv) above.