COSC 4111/5111; Solutions -Winter 2014

Posted: April 14, 2014

Problem Set No. 3 -Solutions

(2) This is not a course on formal recursion theory. Your proofs should be informal (but \neq sloppy), correct, and informative (and if possible short). Please do not trade length for correctness or readability.
(1) Without using Rice's theorem or lemma, explore/prove
(a) the set $A=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ has exactly five distinct elements $\}$ is not recursive. (I.e., " $x \in A$ is unsolvable"). Is it r.e.? Why?

Answer. Let us skip to proving non-r.e.-ness from which non recursiveness also follows:

Define

$$
\xi(x, y)= \begin{cases}\operatorname{rem}(y, 5) & \text { if } \phi_{x}(x) \not \perp \text { in } \leq y \text { steps } \\ y & \text { otherwise }\end{cases}
$$

We know that $\xi \in \mathcal{R}$, so let $h \in \mathcal{P} \mathcal{R}$ such that $\xi(x, y)=\phi_{h(x)}(y)$ for all x, y. Thus, by our familiar analysis (see case of $\left\{x: \phi_{x}\right.$ is a constant function $\}$ in text/class notes),

$$
\phi_{h(x)}= \begin{cases}\lambda y \cdot \operatorname{rem}(y, 5) & \text { if } x \in \bar{K} \\ 0,1,2,3,4,0,1,2,3,4, \ldots y_{0}, y_{0}+1, y_{0}+2, \ldots & \text { otherwise }\end{cases}
$$

where y_{0} depends on x and is the first y-value such that $\phi_{x}(x) \downarrow$ in y steps. Clearly only the condition $x \in \bar{K}$ leads to a range of $\phi_{h(x)}$ with exactly 5 elements; the other condition $(x \in K)$ leads to infinite range. Thus $\bar{K} \leq A$ via this h.
(b) the set $D=\left\{x: \phi_{x}\right.$ is the characteristic function of some set $\}$ is not recursive. Is it r.e.? Why?.

Answer. We use the ψ defined for the case $\left\{x: \phi_{x}\right.$ is a constant function\} in the text/class notes.

$$
\psi(x, y)= \begin{cases}0 & \text { if } \phi_{x}(x) \npreceq \text { in } \leq y \text { steps } \\ \uparrow & \text { otherwise }\end{cases}
$$

COSC 4111/5111. George Tourlakis. Winter 2014

We know that $\psi \in \mathcal{P}$ using def. by pos. cases, so let $\sigma \in \mathcal{P} \mathcal{R}$ such that $\psi(x, y)=\phi_{\sigma(x)}(y)$ for all x, y. Thus

$$
\phi_{\sigma(x)}= \begin{cases}\lambda_{y_{0} \text { zeros }}^{\langle 0,0, \ldots, 0\rangle} & \text { if } x \in \bar{K} \\ \text { otherwise }^{\langle 0, \ldots}\end{cases}
$$

where y_{0} depends on x and is the first y-value such that $\phi_{x}(x) \downarrow$ in y steps. Clearly only the condition $x \in \bar{K}$ leads to a characteristic function (the one for \mathbb{N}); the other condition $(x \in K)$ leads to a finite function which is NOT characteristic (char. functions are total). Thus $\bar{K} \leq D$ via this σ.

So D is neither r.e. nor recursive.
(c) the set $E=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ contains only odd numbers $\}$ is not recursive. Is it r.e.? Why?

Answer. It is not r.e. hence nor recursive:

Define

$$
g(x, y)= \begin{cases}1 & \text { if } \phi_{x}(x) \not x \text { in } \leq y \text { steps } \\ 2 & \text { otherwise }\end{cases}
$$

As we know from class, $g \in \mathcal{P}$, in fact, in \mathcal{R}. Thus, for some $\tau \in \mathcal{P} \mathcal{R}$,

$$
\phi_{\tau(x)}= \begin{cases}\lambda y .1 & \text { if } x \in \bar{K} \tag{2}\\ \underbrace{\langle 1, \ldots, 1}_{y_{0} \text { ones }} 2,2, \ldots\rangle & \text { otherwise }\end{cases}
$$

where y_{0} is the smallest number of steps it takes to have $\phi_{x}(x) \downarrow$. Only in the top case $\operatorname{ran}\left(\phi_{\tau(x)}\right)$ contains only odd numbers. Thus, $\bar{K} \leq E$.
(2) Prove that there is a function $f \in \mathcal{P}$ such that $W_{x} \neq \emptyset$ implies $f(x) \downarrow$ and $f(x) \in W_{x}$.
Hint. To define $f(x)$ you want, given the verifier x (for W_{x}), to dovetail its computation as follows: consider systematically all pairs $\langle y, z\rangle$ until $T(x, y, z)$ holds. If so, set $f(x)=y$ (if not, go happily forever; this is the case $W_{x}=\emptyset$). Make this mathematically precise!

Answer. Thanks for the hint :-)

So, here it goes:

$$
f(x)=\left((\mu z) T\left(x,(z)_{0},(z)_{1}\right)\right)_{0}
$$

(3) Do Exercise 5.2.0.32, p.359.

In view of the bounding lemma, prove that switch (the "full" if-then-else) and max are not in \mathcal{E}^{0}.

Answer. If $s w \in \mathcal{E}^{0}$ then one of the following must hold:

- For some $k, \operatorname{sw}(x, y, z) \leq x+k$ for all x, y, z. Take $y=k+1$ and $x=0$ to get a contradiction.
- For some $k, \operatorname{sw}(x, y, z) \leq y+k$ for all x, y, z. Take $z=y+k+1$ and $x=1$ to get a contradiction.
- For some $k, s w(x, y, z) \leq z+k$ for all x, y, z. Take $y=z+k+1$ and $x=0$ to get a contradiction.

If $\max \in \mathcal{E}^{0}$ then one of the following must hold:

- For some $k, \max (x, y) \leq x+k$ for all x, y. Take $y=x+k+1$ to get a contradiction.
- For some $k, \max (x, y) \leq y+k$ for all x, y. Take $x=y+k+1$ to get a contradiction.
(4) From Section 5.3 do Problem 23.
\#23: Prove that $T \in \mathcal{E}_{*}^{3}$ and $d \in \mathcal{E}^{3}$.
Proof. We systematically scan the proof that $T \in \mathcal{P} \mathcal{R}_{*}$ contained in the text and modify it to obtain this sharper result.
What properties and functions/predicates from $\mathcal{P} \mathcal{R} / \mathcal{P} \mathcal{R}_{*}$ did we use in the proof that

$$
\begin{equation*}
U R M(z), \operatorname{Comp}^{(n)}(z, y) \text { —and therefore } T^{(n)}\left(x, \vec{y}_{n}, z\right) \tag{1}
\end{equation*}
$$

are in $\mathcal{P} \mathcal{R}_{*}$?
First of all, we used closure properties of $\mathcal{P} \mathcal{R}_{*}$ (Boolean and bounded quantification) and of $\mathcal{P} \mathcal{R}$, including closure under $(\mu y)_{\leq z}$. Even though we used $(\mu y)_{\leq z}$ in $\mathcal{P} \mathcal{R}$, the favourite of the \mathcal{E}^{n} classes - $(\stackrel{\circ}{\mu y})_{\leq z}$ - works equally well as it can trivially be verified.

Key functions/predicates in the definition of the predicates in (1) were:
$\lambda x y .\lfloor x / y\rfloor$, exponentials $\left(x^{y}\right)$-in particular $\lambda n x \cdot p_{n}^{x}$ - prime-power coding / decoding and its tools: $[\cdots], S e q(z), l h,(z)_{i}$.

To get $\lambda n x . p_{n}^{x}$ in \mathcal{E}^{3} is easy:
COSC 4111/5111. George Tourlakis. Winter 2014

- Since + and times are in \mathcal{E}^{3} (and earlier), $\operatorname{Pr}(x)$ is in \mathcal{E}_{*}^{3} by closure properties and the fact that $x \mid y$ is no more than $(\exists z)_{\leq y} y=x z$.
- We get $\lambda n . p_{n}$ in \mathcal{E}^{3}, the very same way we did it for $\mathcal{P} \mathcal{R}$: $\pi(x)$ first (the recursion is bounded -by x trivially; π is even in \mathcal{E}^{0}), then $y=p_{n}\left(\right.$ in \mathcal{E}_{*}^{0} and hence in $\left.\mathcal{E}_{*}^{3}\right)$, and then obtain $\lambda n . p_{n}$ as

$$
p_{n}=(\stackrel{\circ}{\mu} y)_{\leq 2^{2 n+1}} y=p_{n}
$$

Note that 2^{x} is in \mathcal{E}^{3} as we have a well-known trivial recursion with iterator $x+y$, and 2^{x} is bounded by $A_{2}^{k}(x)$, for an appropriate k.

- Get x^{y}. Use the obvious recursion that is based on "times" (the latter already in \mathcal{E}^{2}), and note the bounding $x^{y} \leq 2^{x y}$-for a verification of the inequality note the equivalent inequality

$$
y \log _{2} x \leq x y
$$

which is clearly true since $\log _{2} x \leq x$.

- Thus we have (omitting λ) p_{n}^{z} in \mathcal{E}^{3} by substituting p_{n} into x in x^{z}.
- From the text, \mathcal{E}^{3} is closed under $\sum_{\leq z}$ and $\prod_{\leq z}$ (5.2.0.33 ans 5.2.0.34, pp. 359-360)
- Armed with the above, $\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\prod_{i \leq n} p_{i}^{x_{i}+1}$ is in \mathcal{E}^{3} for exactly the same reasons it is in $\mathcal{P} \mathcal{R}$.
Thus the following are also in \mathcal{E}^{3} for exactly the same reasons they are in $\mathcal{P R}$ (proofs exactly as in the case of $\mathcal{P} \mathcal{R}$ except that we now employ $(\mu y)_{\leq z}$ rather than $\left.(\mu y)_{\leq z}\right)$:
(i) $\lambda x y .\lfloor x / y\rfloor$-this is used in the $\operatorname{yield}(z, u, v)$ predicate employed in the definition of $\operatorname{Comp}^{(n)}(z, y)$
(ii) $\lambda x y \cdot \exp (x, y)$
(iii) $\lambda x y \cdot(y)_{x}$
(iv) $\lambda x \cdot \operatorname{lh}(x)$

Now let us look at 2.3.03 first (primitive recursiveness of $U R M(z)$). Given the above bullets the argument there shows also that $U R M(z) \in \mathcal{E}_{*}^{3}$.

Turning to $\operatorname{Comp}^{(n)}(z, y)$, we see no tool used there that we did not establish above as being in \mathcal{E}^{3} or \mathcal{E}_{*}^{3}

In the proof of 2.3.0.7 (Kleene T-predicate) nothing new was done. So $T^{(n)} \in \mathcal{E}_{*}^{3}$. As for the decoding function d it is given by

$$
d(y)=\left((y)_{l h(y)-1}\right)_{1}
$$

and we are done by bullet (iv) above.

