This page must be submitted as the first page of your exam-paper answer pages.

York University
Department of Electrical Engineering and Computer Science Lassonde School of Engineering

EECS 1028 M. FINAL EXAM, April 9, 2020; 9:00-11:00am Professor George Tourlakis

By putting my name and student ID on this Exam page, I attest to the fact that my answers included here and submitted by Moodle are my own work, and that I have acted with integrity, abiding by the Senate Policy on Academic Honesty that the instructor discussed at the beginning of the course and linked the full Policy to the Course Outline.

Student NAME (Clearly):

Student NUMBER (Clearly):

DATE (Cearly):

README FIRST! INSTRUCTIONS:

1. Please read ALL these instructions carefully before you start writing.
2. TIME-LIMITED ON LINE EXAM. You have TWO hours to answer the Exam questions, plus another 45 minutes to allow a proper uploading job. Overall Exam End and last opportunity to upload is thus at 11:45 am. Only ONE file can be uploaded per student.
3. If you submit photographed copy it still must be ONE file that you submit. Either ZIP the PNG images OR import them in MS Word and submit ONE Word file with the PNGs attached.
4. Using the time allotted for the uploading mechanisms (45 min) for the exam-answering part is at your own discretion. But also at your own risk. Exam not uploaded $=$ Exam not written.
5. Please write your answers by hand as you normally do for assignments or use a word

Question	MAX POINTS	MARK
1	4	
2	5	
3	6	
4	4	
5	5	
6	4	
7	4	
8	4	
9	4	
TOTAL	40	

6. Whichever theorems were proved in class or appeared in the assignments you may use without proof, unless I am asking you to prove them in this Exam. If you are not sure whether some statement has indeed been proved in class, I recommend that you prove it in order to be "safe".

Question 1. (a) (1 MARK) Does Principle 2 refer to "stages"? (Simply: Yes/No)
(b) (3 MARKS) Using said principle prove that if R is an equivalence relation on a set A then A / R that denotes the set of all the equivalence classes of R is also a set.

Question 2. Consider the congruence modulo 5, "三 $=_{5}$ ".
We know that it is an equivalence relation on \mathbb{Z}.
(a) (1 MARK) How many equivalence classes does \equiv_{5} have?
(b) (4 MARKS) Display each of the equivalence classes of \equiv_{5} as specific sets of integers. Caution. A "display" that is just the definition of an equivalence class as in

$$
[y] \stackrel{\text { Def }}{=}\left\{x \in \mathbb{Z}: x \equiv_{5} y\right\}
$$

will NOT do (0 marks). Your display must NOT refer to the symbol " \equiv_{5} ".

Question 3. Given the relation R on $A=\{a, b, c, d, e\}$ by the pairs

$$
R=\{(a, b),(c, b),(b, d),(e, d)\}
$$

(a) (2 MARKS) Display the transitive closure R^{+}of R as a set of pairs.
(b) (1 MARK) Explain why R^{+}is an order. Caution: An order has two defining properties.
(c) (2 MARKS) Display the Hasse diagram of the order R^{+}
(d) (1 MARK) Display the set of minimal members of R^{+}.

Question 4. (4 MARKS) We know that for relations R, Q and P we have

$$
(R \circ Q) \circ P=R \circ(Q \circ P)
$$

Prove that for functions f, g and h we have

$$
(f g) h=f(g h)
$$

Hint. Careful with the notation " $f g$ "!

Question 5. (5 MARKS) Solve the recurrence below in closed form for T_{n} :

```
\(\left\{\begin{array}{l}T_{0}=0 \\ \text { and, for } n>0, \\ T_{n}=n T_{n-1}+n!\end{array}\right.\)
```

The notation " n !" above is the " n factorial", that is, " $1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot n$ ".
Hint. Do NOT use generating functions. Use the "telescoping series" trick for additive recurrences from our lecture notes. But before you do that it is strongly recommended to divide by " n !" both sides of " $=$ " (in the second equation) and work with

$$
t_{n} \stackrel{D e f}{=} \frac{T_{n}}{n!}
$$

instead of T_{n}.

Question 6. (4 MARKS) Prove that $\sum_{i=1}^{n} i^{5}=O\left(n^{6}\right)$.

Question 7. (4 MARKS) Prove using the short north-east diagonals

or any other mathematical method of your preference, that if A is enumerable, then it is also countable with an enumeration that lists each of its members exactly three (3) times.
Hint. Your proof will consist of constructing an enumeration with the stated requirement.

Question 8. (4 MARKS) Prove $A \rightarrow(\forall x) B \vdash(\forall x)(A \rightarrow B)$.
Hint. It is recommended that you use Axiom 2 (in its "simple form") early on in your proof.

Question 9. (4 MARKS) Use (simple) induction on n to prove that for $n \geq 0,7^{n}-2^{n}$ is divisible by 5 .

