A SIMPLE INDUCTION PROOF

Prove

$$
\begin{equation*}
1+3+5+\ldots+(2 n+1)=\sum_{i=0}^{n}(2 i+1)=(n+1)^{2} \tag{1}
\end{equation*}
$$

Proof. Simple Induction on n. Basis: For $n=0$ we have

$$
1=\sum_{i=0}^{0}(2 i+1)=2.0+1=1^{2}
$$

Correct!
Now fix n, and take as I.H. (1) above.
For the I.S. I consider the $n+1$ case, for the same n that I fixed above: Simple arithmetic yields

$$
\sum_{i=0}^{n+1}(2 i+1) \stackrel{\text { I.H. see red to the right }}{=}(n+1)^{2}+2(n+1)+1=(n+2)^{2}
$$

