Lassonde School of Engineering
 Dept. of EECS
 Professor G. Tourlakis
 EELS 1028 M. Problem Set No
 Posted: Jan. 12, 2020

Due: Jan. 24, 2020; by $4: 00 \mathrm{pm}$, in the course assignment box.

 It is worth remembering (from the course outline):The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. True or False and Why.
(a) (2 MARKS) $\{\{1\},\{2\}\}=\{1,2\}$
(b) $(2$ MARKS) $\{1,1,42\}=\{42,42,1\}$
(c) $(2$ MARKS $)\{\emptyset\}=\emptyset$
(d) $(2$ MARKS $) \emptyset \subseteq\{\emptyset\}$
(e) $(2$ MARKS $) ~ \emptyset \varsubsetneqq \emptyset$
(f) (2 MARKS) $\emptyset \in \emptyset$
2. (3 MARKS) Can you find a set A that satisfies $A=\{A\}$? Why exactly?
3. (5 MARKS) Prove that if, for two sets A and B, we have $2^{A}=2^{B}$, then we also have $A=B$.
Hint. Argue at the "elements level". That is, to establish $A=B$ prove for the arbitrary element/member x that we have $x \in A \equiv x \in B$.

Page 1

G. Tourlakis

Of course, you will prove the latter by proving each of $x \in A \rightarrow x \in B$ -"let $x \in A$. I will prove now $x \in B$. Etc." - and $x \in B \rightarrow x \in A$, as we talked about in class and posted notes.

Of course at some point you must use the given: $2^{A}=2^{B}$
4. (5 MARKS) For any sets A, B, C, prove that $A \cup(B \cap C)=(A \cup B) \cap$ $(A \cup C)$.
Hint. Argue at the "elements level".
5. (5 MARKS) Prove that, for any sets A and B, it is true that $A \subseteq B$ iff $A \cup B=B$.

Hint. There are two directions! lhs of iff implies rhs, and rhs of iff implies lhs.
6. Let S be a set.
(a) (3 MARKS) Is $T=\{x \in S: x \notin x\}$ a set?
(b) (3 MARKS) Can you express T very simply in terms of S ? This is not a yes/no question. Either say "I do not know" or provide with reason such a very simple expression that connects T and S.
7. Use notation by explicitly listing all the members of each rhs \{???\} to complete the following incomplete equalities:
(a) $(2$ MARKS $) 2^{\emptyset}=\{? ? ?\}$
(b) (2 MARKS) $2^{\{\emptyset\}}=\{? ? ?\}$
(c) (2 MARKS) $2^{2^{\{\emptyset\}}}=\{? ? ?\}$
(d) (2 MARKS) $2^{2^{2^{\{\phi\}}}}=\{? ? ?\}$

