Lassonde School of Engineering Dept. of EECS
 Professor G. Tourlakis
 EELS 1028 M. Problem Set No
 Posted: Jan. 26, 2020

Due: Feb. 12, 2020; by $3: 00 \mathrm{pm}$, in the course assignment box.

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. (3 MARKS) Use a theorem that we proved in class, but do NOT use an argument involving stages, to prove that if A is a set, then so is $\{A\}$.
2. (3 MARKS) By picking two particular very small sets A and B show that $A-B=B-A$ is not true for all sets A and B.
Is it true of all classes? WHY?
3. (3 MARKS) What is $\bigcup F$ if $F=\emptyset$? Set or proper class? WHY? "Compate" which class exactly it is.
4. (6 MARKS) Prove that if a reflexive R (on some set A) satisfies

$$
\begin{equation*}
x R y \wedge x R z \rightarrow y R z \tag{1}
\end{equation*}
$$

for all x, y, z, then it is an equivalence relation.
Caution. Note the order of the x, y, z in (1)!
Page 1
G. Tourlakis
5. (6 MARKS) Show that if for a relation R we know that $R^{2} \subseteq R$, then R is transitive, and conversely.
Hint. There are two directions in the sought proof.
6. (6 MARKS) Show that for any relation R we have

$$
R \text { is transitive iff } R=R^{+}
$$

Hint. There are two directions in the sought proof.
7. (8 MARKS) In class we proved that if R is on $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where the a_{i} are distinct, then

$$
R^{+}=\bigcup_{i=1}^{n} R^{i}
$$

Prove that if R is moreover reflexive, then

$$
R^{+}=R^{n-1}
$$

That is, taking a union of R^{i} is not needed; just one term, R^{n-1} will do!
8. (5 MARKS) Give an example of two equivalence relations R and S on the set $A=\{1,2,3\}$ such that $R \cup S$ is not an equivalence relation.

