Lassonde School of Engineering

Dept. of EECS Professor G. Tourlakis EECS 1028 M. Problem Set No3 Posted: Feb. 14, 2020

Due: Mar. 3, 2020; by 3:00pm, in the course assignment box.

Tt is worth remembering (from the course outline):

The homework **must** be each individual's <u>own work</u>. While consultations with the <u>instructor</u>, tutor, and <u>among students</u>, are part of the <u>learning</u> <u>process</u> and are encouraged, **nevertheless**, at the end of all this consultation each student will have to produce an <u>individual report</u> rather than a *copy* (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

- 1. (5 MARKS) Prove that if $f : A \to B$ is a 1-1 correspondence, then so is f^{-1} and we have $ff^{-1} = \mathbf{1}_B$ and $f^{-1}f = \mathbf{1}_A$.
- **2.** (5 MARKS) Let $f : A \to B$. Then $(\mathbf{1}_B f) = f$ and $(f\mathbf{1}_A) = f$.
- **3.** (6 MARKS) Let $f : A \to B$ be a 1-1 correspondence. Then
 - If $gf = \mathbf{1}_A$, we have $g = f^{-1}$.
 - If $fh = \mathbf{1}_B$, we have $h = f^{-1}$.
- 4. (6 MARKS) Show that the range of the function $f : \mathbb{N}^2 \to \mathbb{N}$ of variables x, y given by $f(x, y) = 2^x 3^y$ has infinite range.

Hint. Prove that the set $A = \{2^x 3^0 : x \in \mathbb{N}\}$ is infinite —can you *easily* show that it is in 1-1 correspondence with a set we *know* is infinite? Conclude that so is ran(f).

5. (5 MARKS) Prove that if A and B are enumerable, so is $A \times B$.

G. Tourlakis

Ş

Page 1