Lassonde School of Engineering Dept. of EECS Professor G. Tourlakis SECS 1028 M. Problem Set No Posted: Feb. 14, 2020

Due: Mar. 3, 2020; by 3:00pm, in the course assignment box. It is worth remembering (from the course outline):

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. (5 MARKS) Prove that if $f: A \rightarrow B$ is a $1-1$ correspondence, then so is f^{-1} and we have $f f^{-1}=\mathbf{1}_{B}$ and $f^{-1} f=\mathbf{1}_{A}$.
2. (5 MARKS) Let $f: A \rightarrow B$. Then $\left(\mathbf{1}_{B} f\right)=f$ and $\left(f \mathbf{1}_{A}\right)=f$.
3. (6 MARKS) Let $f: A \rightarrow B$ be a $1-1$ correspondence. Then

- If $g f=\mathbf{1}_{A}$, we have $g=f^{-1}$.
- If $f h=\mathbf{1}_{B}$, we have $h=f^{-1}$.

4. (6 MARKS) Show that the range of the function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ of variables x, y given by $f(x, y)=2^{x} 3^{y}$ has infinite range.
Hint. Prove that the set $A=\left\{2^{x} 3^{0}: x \in \mathbb{N}\right\}$ is infinite - can you easily show that it is in 1-1 correspondence with a set we know is infinite? Conclude that so is $\operatorname{ran}(f)$.
5. (5 MARKS) Prove that if A and B are enumerable, so is $A \times B$.

Page 1

G. Tourlakis

