Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis
EECS 1028 M. Problem Set No4
Posted: March 14, 2020
Due: From Apr. 4, 2:00pm until Apr. 6, 2020; by $2: 00 \mathrm{pm}$, Submit by Moodle to area named "ASSIG \#4".

It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. (6 MARKS) We are given an enumeration of A by a $1-1$ correspondence $f: \mathbb{N} \rightarrow A$. This enumeration has no repetitions.
Hint. Prove that you can use the enumeration f to obtain a different enumeration where each member of A is enumerated infinitely many times. You will find the traversal with north-east arrows, \nearrow, profitable. Traversal of what? (This I leave to you :)
2. (5 MARKS) Prove that if A is infinite and $a \in A$, then $A-\{a\}$ is also infinite.
3. (5 MARKS) Prove that $\vdash(\forall x)(A \rightarrow B) \rightarrow A \rightarrow(\forall x) B$, provided x is not free in A.
4. (5 MARKS) Prove that $\vdash(\forall x)(A \rightarrow B) \rightarrow(\exists x) A \rightarrow(\exists x) B$.

Page 1
G. Tourlakis
5. (5 MARKS) All the sets in this problem are subsets of \mathbb{N}. For any $A \subseteq \mathbb{N}$, let us use the notation

$$
\bar{A} \stackrel{\text { Def }}{=} \mathbb{N}-A
$$

Now prove by simple induction on n that

$$
\begin{equation*}
\overline{\bigcup_{1 \leq i \leq n} A_{i}}=\bigcap_{1 \leq i \leq n} \overline{A_{i}} \tag{1}
\end{equation*}
$$

6. (5 MARKS) Prove by simple induction on n that

$$
\begin{equation*}
\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6 \tag{2}
\end{equation*}
$$

7. (5 MARKS) Prove by induction that

$$
\sum_{0 \leq k \leq n}(-2)^{k}=(1 / 3)\left(1-2^{n+1}\right)
$$

for all odd positive n.
Hint. An odd positive n has the form $2 m+1$ for $m \geq 0$.
8. (6 MARKS) Let A denote a finite alphabet. Let A^{*} denote the set of all strings over A, including the empty string λ. Let us define the set P as the closure of the initial set $\mathcal{I}=\{\lambda\} \cup A$, under the operations on strings, O_{a}, given by

$$
x \mapsto O_{a} \mapsto a x a
$$

for every $a \in A$.
So the set of operations \mathcal{O} is $\left\{O_{a}: a \in A\right\}$. Thus, $P=\operatorname{Cl}(\mathcal{I}, \mathcal{O})$.
We are also told that \widehat{P}, the set of palindromes is defined over A^{*} as

$$
\{x: x \text { is identical to its reversal }\}
$$

Prove that $P=\widehat{P}$.
Hint. For \subseteq do induction on P. For \supseteq do induction on the length of strings in \widehat{P} to show that each such string has an $(\mathcal{I}, \mathcal{O})$-derivation.

Page 2

G. Tourlakis

