
102 4. A Tiny Bit of Informal Logic

4.3. Inductive definitions

Inductive definitions are increasingly being renamed to “recursive definitions”
in the modern literature, thus using “recursive” for definitions, and “induction”
for proofs. I will not go out of my way to use this dichotomy of nomenclature.

4.3.1 Example.

a0 = 1
an+1= a · an

is an example of an inductive (recursive) definition of the non-negative integer
powers of a non zero number a. �

4.3.2 Example. Another example is the Fibonacci sequence,† given by

F0 = 0
F1 = 1

and for n ≥ 1
Fn+1= Fn + Fn−1

Unlike the function (sequence) a0, a1, a2, a3, . . ., for which we only need the value
at n to compute the value at n + 1, the Fibonacci function needs two previous
values, at n− 1 and at n, to compute the value at n + 1. �

This section looks at inductive/recursive definitions in general, but for functions
whose left field is N or Nn+1 for some fixed n.

4.3.3 Definition. We consider in this section a general recursive definition of
a function G : Nn+1 → A, for a given n ≥ 0 and set A.

This definition has the form (1) below.

Two total functions are given.

1. H : Nn → A, where A is some set. The typical call to H looks like H(b)
where b ∈ Nn. If n = 0, then we do not have any arguments for H. In
this case H is just a constant (i.e., a fixed element of A).

2. K : Nn+1 × 2A → A. The typical call to K looks like K(m,b, z) where
m ∈ N, b ∈ Nn and z is a subset of A. If n = 0 then we do not have the
argument b.

We will explore below whether the following definition (1) indeed yields a
function G : Nn+1 → A of arguments a and b where a ∈ N and b ∈ Nn.
If n = 0, then we do not have the argument b, rather we will have just
one argument in G: a ∈ N.

†The “sequence” F0, F0, F0, . . . is, of course, a total function from F : N→ N.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



4.3. Inductive definitions 103

G(a,b) = H(b)

G(a + 1,b)= K
(
a,b,

{
G(0,b), G(1,b), . . . , G(a,b)

})
(1)

�

4.3.4� Remark. The notation of the set-argument{
G(0,b), G(1,b), . . . , G(a,b)

}
(2)

in (1) above is way less informative than the notation implies! Its members
—listed again in (2)— can be put in any order and there are no markings on
any of these members of A that will reveal the 1st argument of G (the position
of the call G(i,b) in the sequence as presented in (2)). So we should not read
(2) as if it conveys position!

Pause. Well, why not instead of using a set-argument write instead

K
(
a,b, G(0,b), G(1,b), . . . , G(a,b)

)
that is, have each call to G(i,b) explicitly “coded” in the function K? Because
I cannot have a variable number of arguments!J

This is no problem in practise. In any specific application of the definition
form (1) the structure of K can be chosen/built so that it will “know and choose”
what recursive calls it needs to make —in which order and for which arguments—
to compute G(a + 1,b).

For example, the specific use of principle (1) to the Fibonacci function def-
inition 4.3.2 has chosen that to compute Fn+1 it will always call just Fn and
Fn−1 from the entire “history at input n” —namely, {F0, F1, F2, . . . , Fn}— and
then return the sum of the call results.

So the notation (1) (via (2)) simply conveys —for the benefit of our two
theorems coming up below— that in general an inductive definition (1) might
call recursively as many as all the G(i,b) in (2) to compute G(a + 1,b).

BTW, there are complicated inductive definitions such that the recursive
calls are not always at fixed (argument-)positions to the left of “a + 1”, unlike
the Fibonacci recursive definition that computes Fn+1, for any n ≥ 1, by always
calling the function recursively with arguments at precisely the numbers before
n + 1. These complicated cases will choose which G(i,b) from among the his-
tory (2) to call, depending on the value of a + 1 � �

4.3.5 Lemma. Let n ≥ 1. If we define the order ≺ on Nn+1 by (a,b) ≺ (a′,b′)
iff a < a′ and b = b′, then ≺ is an order that has MC on Nn+1.

Proof.

1. ≺ is an order:

• Indeed, if (a,b) ≺ (a,b), then a < a which is absurd.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



104 4. A Tiny Bit of Informal Logic

• If (a,b) ≺ (a′,b′) ≺ (a′′,b′′), then b = b′ = b′′ and a < a′ < a′′.
Thus a < a′′ and hence (a,b) ≺ (a′′,b′′).

2. ≺ has MC: So let ∅ 6= A ⊆ Nn+1. Let a be <-minimum in S = {x :
(∃b)(x,b) ∈ A} ⊆ N.

Pause. Why is S 6= ∅?J

Let c be such that (a, c) ∈ A. This (a, c) is ≺-minimal in A. Otherwise
for some d, A 3 (d, c) ≺ (a, c). Hence d < a, but this is a contradiction
since d ∈ S (why?). �

� The minimal elements of ≺ are of the form (0,b), (0,b′), (0,b′′), . . ., which are
not comparable if they have distinct “b-parts”. Thus they are infinitely many. �

4.3.6 Lemma. Let (Y,<) be a POset with MC —where I use “<” generically,
not as the one on N.

Then, for any subset ∅ 6= B of Y , (B,<) is a POset with MC.

Proof. We show two things:

1. (B,<) is a POset.

< is irreflexive on Y , hence it is trivially so on any subset of Y . Transitivity
too is inherited from that of < on Y , since if x, y, z are in B and we have
x < y < z, then x, y, z are in Y and we still have x < y < z. Hence x < z
is true.

2. Let ∅ 6= S ⊆ B. Now S —viewed as a subset of Y — has a <-minimal
member m. We cannot have x < m with x ∈ S in (B,<) since then we
have x < m with x ∈ S in (Y,<). �

4.3.7 Theorem. If there is a function G : Nn+1 → A satisfying (1) of 4.3.3,
then it is unique.

Proof. Suppose we have two such functions, G and G′ that satisfy (1) for given
H and K. If G and G′ differ, then there is an argument (a,b) such that
G(a,b) 6= G′(a,b) then there is —by Lemma 4.3.5— a ≺-minimal such argu-
ment, say, (m, c), in the set T = {(a,b) : G(a,b) 6= G′(a,b)}. So

G(m, c) 6= G′(m, c) (∗)

Now, (m, c) is not ≺-minimal in Nn+1 since on such inputs we have G(0,d) =
H(d) = G′(0,d). Thus, in particular, m > 0.

But then, by (1) of 4.3.3, we compute each of G(m, c) and G′(m, c) by the
second equation as

K
(
m− 1, c, {G(0, c), G(1, c), . . . , G(m− 1, c)}

)
Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



4.3. Inductive definitions 105

since minimality of (m, c) in the set T entails

G(i, c) = G′(i, c), for i = 0, 1, . . .m− 1

Since K is single-valued (function!) we have G(m, c) = G′(m, c), contradict-
ing (∗). Thus T = ∅ and therefore G(a,b) = G′(a,b), for all (a,b) ∈ Nn+1. For
short, the functions G and G′ are the same. �

4.3.8 Theorem. There is a function G : Nn+1 → A satisfying (1) of 4.3.3.

Proof. The idea is simple: Build the function by stages as an infinite set of
building blocks. Each block is a restriction of G —that is, a partial table
for G— so that the domain of the restriction is an “initial segment” of Nn+1

determined by some point (“point” is synonymous to “element”) (m,b). Thus
the “general” segment is the set

S(m,b)
Def
= {(a,b) : (a,b) ≺ (m,b)} ∪ {(m,b)} (†)

The notation “S(m,b)” reflects “S” for segment, subscripted with the defining
point (m,b). Once you have all the building blocks, you put them together to
get the G you want.

Let us call G(m,b) the function (if it exists) from S(m,b) → A that satisfies (1)
of 4.3.3 if we replace the G there by G(m,b) everywhere.

� Why am I emphasising “the”? Because S(m,b) inherits MC from Nn. Cf. 4.3.6.
And then 4.3.7 applies to G(m,b) : S(m,b) → A as the proof of 4.3.7 applies
unchanged (just change Nn+1 and G to S(m,b) and G(m,b) respectively; all else
is the same in the proof).

We have one more important (for this proof) observation related to unique-

ness: If (x,b) ≺ (y,b), then G(x,b)(u,b) = G(y,b)(u,b), for all u ≤ x .†

Indeed, if G(x,b) and G(y,b) exist, then they both satisfy (1) of 4.3.3 on the
subset S(x,b) of S(y,b). �

Our next task is simply to show that for each (m,b) ∈ Nn+1,

the function G(m,b) : S(m,b) → A that satisfies (1) in 4.3.3 exists (‡)

where we changed Nn+1 and G into S(m,b) and G(m,b) respectively.

We do so constructively —that is, show how each G(m,b) : S(m,b) → A is
built— by CVI on the variable (m,b) along the order ≺ over Nn+1.

1. Basis: For any minimal (0,b),‡ we have S(0,b) = {(0,b)}. Thus, using
the first equation of (1) in 4.3.3, we set

G(0,b) =
{(

(0,b), H(b)
)}§

†Here “≤” is, of course, the “less-than-or-equal” on N.
‡We remarked that the (0,b) for various b ∈ Nn are the ≺-minimal points in Nn+1.
§We still remember that a function is a set of pairs! This one has just one pair.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



106 4. A Tiny Bit of Informal Logic

2. I.H. Assume that for all (x,b) ≺ (m,b)† we have built G(x,b) : S(x,b) → A
all of which satisfy (the two equations of) (1) of 4.3.3.

In view of the boxed statement above, G(m,b) coincides with each G(x,b)

—for (x,b) ≺ (m,b)— on the latter’s domain. Thus I need only add one
input/output pair to

⋃
(x,b)≺(m,b) G(x,b) = G(m−1,b)

� Why is this last “=” correct? �

at input (m,b) to obtain G(m,b).

To do so I simply use (1) of 4.3.3, second equation. The I/O pair added
to obtain G(m,b) is(

(m− 1,b), K
(
m− 1,b, {G(m−1,b)(0,b), . . . , G(m−1,b)(m− 1,b)}

))
It is clear that on any input (u,b), whether the just constructed relation
G(m,b) “thinks” that it is G(x,b) or G(y,b) it will give the same output due
the boxed statement above. Thus, the relation G(x,b) is a function.

It is now time to put all the G(x,b) together to form G : Nn+1 → A. Just
define G by

G
Def
=

⋃
(x,b)∈Nn+1

G(x,b) (∗)

Observe regarding G:

1. As a relation it is total on the left field Nn+1 because it is defined on the
arbitrary (x,b) ∈ Nn+1 since G(x,b) : S(x,b) → A is.

2. ran(G) ⊆ A. Because it is so for each G(x,b) : S(x,b) → A.

3. G is single-valued, hence a function from Nn+1 to A, since the value
G(u,b) does not depend on which G(x,b) : S(x,b)→A we used to obtain
it as G(x,b)(u,b) (by boxed statement above).

Finally,

4. G satisfies (1) of 4.3.3 since by (∗), for any (x,b) ∈ Nn+1, G(x,b) =
G(x,b)(x,b), and G(x,b)(x,b) is constructed to obey the two equations
of (1) of 4.3.3, for all x ≥ 0 and b ∈ Nn. �

Let us see some examples:

4.3.9 Example. We know that 2n means

n 2s︷ ︸︸ ︷
2× 2× 2× . . .× 2

†Recall that for b 6= c, (x,b) and (y, c) are not comparable.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



4.3. Inductive definitions 107

But “. . .”, or “etc.”, is not MATH! That is why we gave at the outset of this
section the definition 4.3.1.

Applied to the case a = 2 we have

20 = 1
2n+1= 2× 2n (1)

We know from 4.3.8 and 4.3.7 that both (1) above and the definition in 4.3.1
define a unique function, each satisfying its defining equations.

For the function that for each n outputs 2n we can give an alternative defi-
nition that uses “+” rather than “×”:

20 = 1
2n+1= 2n + 2n �

4.3.10 Example. Let f : Nn+1 → N be given. How can I define
∑n

i=0 f(i,b)
—for any b ∈ Nn— other than by the sloppy

f(0,b) + f(1,b) + f(2,b) + . . . + f(i,b) + . . . + f(n,b)?

By induction/recursion, of course:∑0
i=0 = f(0,b)∑n+1
i=0 =

(∑n
i=0 f(i,b)

)
+ f(n + 1,b) (1)

�

4.3.11 Example. Let f : Nn+1 → N be given. How can I define
∏n

i=0 f(i,b)
—for any b ∈ Nn— other than by the sloppy

f(0,b)× f(1,b)× f(2,b)× . . .× f(i,b)× . . .× f(n,b)?

By induction/recursion, of course:∏0
i=0 = f(0,b)∏n+1
i=0 =

(∏n
i=0 f(i,b)

)
+ f(n + 1,b) (2)

Again, by 4.3.8 and 4.3.7, each of (1) and (2) define a unique function,
∑

and∏
that behaves as required. Really? For example, the first equation of (1) gives

us the one-term sum, f(0,b). It is correct. Assume (I.H. by simple induction
on n) that the term

∑n
i=0 f(i,b) correctly captures the sloppy

f(0,b) + f(1,b) + f(2,b) + . . . + f(i,b) + . . . + f(n,b)

that indicates the sum of the first n + 1 terms of the type f(i,b) for i =
0, 1, 2, . . . , n. But then, clearly the second equation of (1) correctly defines
the sum of the first n + 2 terms of the above type, by adding f(n + 1,b) to∑n

i=0 f(i,b). �

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



108 4. A Tiny Bit of Informal Logic

4.3.12 Example. Here is a function with huge output! Define f : N→ N by

f(0) = 1
f(n + 1)= 2f(n) (3)

What does f(n) look like in sloppy notation? Well,

f(0) = 1, f(1) = 2f(0) = 2, f(2) = 2f(1) = 22, f(3) = 2f(2) = 222

Hmm! Is the guess that f(n) is a ladder of n 2s? Yes! Let’s verify by induction:

1. Basis. f(0) = 1. A ladder of zero 2s. Correct.

2. I.H. Fix n and assume that

f(n) = 222·
··

2
 n 2s

A ladder of n 2s.

3. I.S. Thus f(n + 1) = 2f(n), so we put the ladder of n 2s of the I.H. as
the exponent of 2 —forming a ladder of n + 1 2s— to obtain f(n + 1).
Done! �

4.3.13 Example. (Fibonacci; a comment) This short example is to be clear,
as in the case of induction proofs, that the “Basis” case is for minimal elements
(compare with Exercise 4.2.13, case 5).

F0 = 0
F1 = 1

and for n ≥ 1
Fn+1= Fn + Fn−1

In the above “F1 = 1” is NOT a “Basis case” because 1 is not minimal in N!
(“F0 = 0” is the Basis case, corresponding to the first equation in (1) of 4.3.3).
So what is “F1 = 1”? It is a boundary case of the second equation in the general
Definition 4.3.3. This equation, in the Fibonacci case, can be rewritten as

Fn+1= if n = 0 then 1
else Fn + Fn−1 �

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.


