4.3. Inductive definitions

Inductive definitions are increasingly being renamed to "recursive definitions" in the modern literature, thus using "recursive" for definitions, and "induction" for proofs. I will not go out of my way to use this dichotomy of nomenclature.

4.3.1 Example.

$a^{0}=1$
$a^{n+1}=a \cdot a^{n}$
is an example of an inductive (recursive) definition of the non-negative integer powers of a non zero number a.
4.3.2 Example. Another example is the Fibonacci sequence ${ }^{\dagger}$ given by
$F_{0}=0$
$F_{1}=1$
and for $n \geq 1$
$F_{n+1}=F_{n}+F_{n-1}$
Unlike the function (sequence) $a^{0}, a^{1}, a^{2}, a^{3}, \ldots$, for which we only need the value at n to compute the value at $n+1$, the Fibonacci function needs two previous values, at $n-1$ and at n, to compute the value at $n+1$.

This section looks at inductive/recursive definitions in general, but for functions whose left field is \mathbb{N} or \mathbb{N}^{n+1} for some fixed n.
4.3.3 Definition. We consider in this section a general recursive definition of a function $G: \mathbb{N}^{n+1} \rightarrow A$, for a given $n \geq 0$ and set A.

This definition has the form (1) below.
Two total functions are given.

1. $H: \mathbb{N}^{n} \rightarrow A$, where A is some set. The typical call to H looks like $H(\mathbf{b})$ where $\mathbf{b} \in \mathbb{N}^{n}$. If $n=0$, then we do not have any arguments for H. In this case H is just a constant (i.e., a fixed element of A).
2. $K: \mathbb{N}^{n+1} \times 2^{A} \rightarrow A$. The typical call to K looks like $K(m, \mathbf{b}, z)$ where $m \in \mathbb{N}, \mathbf{b} \in \mathbb{N}^{n}$ and z is a subset of A. If $n=0$ then we do not have the argument \mathbf{b}.

We will explore below whether the following definition (1) indeed yields a function $G: \mathbb{N}^{n+1} \rightarrow A$ of arguments a and \mathbf{b} where $a \in \mathbb{N}$ and $\mathbf{b} \in \mathbb{N}^{n}$. If $n=0$, then we do not have the argument \mathbf{b}, rather we will have just one argument in $G: a \in \mathbb{N}$.

[^0]\[

$$
\begin{align*}
& G(a, \mathbf{b})=H(\mathbf{b}) \\
& G(a+1, \mathbf{b})=K(a, \mathbf{b},\{G(0, \mathbf{b}), G(1, \mathbf{b}), \ldots, G(a, \mathbf{b})\}) \tag{1}
\end{align*}
$$
\]

4.3.4 Remark. The notation of the set-argument

$$
\begin{equation*}
\{G(0, \mathbf{b}), G(1, \mathbf{b}), \ldots, G(a, \mathbf{b})\} \tag{2}
\end{equation*}
$$

in (1) above is way less informative than the notation implies! Its members -listed again in (2) - can be put in any order and there are no markings on any of these members of A that will reveal the 1 st argument of G (the position of the call $G(i, \mathbf{b})$ in the sequence as presented in (2)). So we should not read (2) as if it conveys position!

Pause. Well, why not instead of using a set-argument write instead

$$
K(a, \mathbf{b}, G(0, \mathbf{b}), G(1, \mathbf{b}), \ldots, G(a, \mathbf{b}))
$$

that is, have each call to $G(i, \mathbf{b})$ explicitly "coded" in the function K ? Because I cannot have a variable number of arguments!

This is no problem in practise. In any specific application of the definition form (1) the structure of \bar{K} can be chosen/built so that it will "know and choose" what recursive calls it needs to make - in which order and for which argumentsto compute $G(a+1, \mathbf{b})$.

For example, the specific use of principle (1) to the Fibonacci function definition 4.3.2 has chosen that to compute F_{n+1} it will always call just F_{n} and F_{n-1} from the entire "history at input n " - namely, $\left\{F_{0}, F_{1}, F_{2}, \ldots, F_{n}\right\}$ - and then return the sum of the call results.

So the notation (1) (via (2)) simply conveys -for the benefit of our two theorems coming up below- that in general an inductive definition (1) might call recursively as many as all the $\overline{G(i, \mathbf{b}) \text { in }}(2)$ to compute $G(a+1, \mathbf{b})$.

BTW, there are complicated inductive definitions such that the recursive calls are not always at fixed (argument-)positions to the left of " $a+1$ ", unlike the Fibonacci recursive definition that computes F_{n+1}, for any $n \geq 1$, by always calling the function recursively with arguments at precisely the numbers before $n+1$. These complicated cases will choose which $G(i, \mathbf{b})$ from among the history (2) to call, depending on the value of $a+1$
4.3.5 Lemma. Let $n \geq 1$. If we define the order \prec on \mathbb{N}^{n+1} by $(a, \mathbf{b}) \prec\left(a^{\prime}, \mathbf{b}^{\prime}\right)$ iff $a<a^{\prime}$ and $\mathbf{b}=\mathbf{b}^{\prime}$, then \prec is an order that has $M C$ on \mathbb{N}^{n+1}.

Proof.

1. \prec is an order:

- Indeed, if $(a, \mathbf{b}) \prec(a, \mathbf{b})$, then $a<a$ which is absurd.
- If $(a, \mathbf{b}) \prec\left(a^{\prime}, \mathbf{b}^{\prime}\right) \prec\left(a^{\prime \prime}, \mathbf{b}^{\prime \prime}\right)$, then $\mathbf{b}=\mathbf{b}^{\prime}=\mathbf{b}^{\prime \prime}$ and $a<a^{\prime}<a^{\prime \prime}$. Thus $a<a^{\prime \prime}$ and hence $(a, \mathbf{b}) \prec\left(a^{\prime \prime}, \mathbf{b}^{\prime \prime}\right)$.

2. \prec has MC: So let $\emptyset \neq A \subseteq \mathbb{N}^{n+1}$. Let a be $<-$ minimum in $S=\{x$: $(\exists \mathbf{b})(x, \mathbf{b}) \in A\} \subseteq \mathbb{N}$.

Pause. Why is $S \neq \emptyset$?
Let \mathbf{c} be such that $(a, \mathbf{c}) \in A$. This (a, \mathbf{c}) is \prec-minimal in A. Otherwise for some $d, A \ni(d, \mathbf{c}) \prec(a, \mathbf{c})$. Hence $d<a$, but this is a contradiction since $d \in S$ (why?).

The minimal elements of \prec are of the form $(0, \mathbf{b}),\left(0, \mathbf{b}^{\prime}\right),\left(0, \mathbf{b}^{\prime \prime}\right), \ldots$, which are not comparable if they have distinct "b-parts". Thus they are infinitely many.
4.3.6 Lemma. Let $(Y,<)$ be a POst with $M C-w h e r e$ I use " $<$ " generically, not as the one on \mathbb{N}.

Then, for any subset $\emptyset \neq B$ of $Y,(B,<)$ is a POst with MC.
Proof. We show two things:

1. $(B,<)$ is a POst.
$<$ is irreflexive on Y, hence it is trivially so on any subset of Y. Transitivity too is inherited from that of $<$ on Y, since if x, y, z are in B and we have $x<y<z$, then x, y, z are in Y and we still have $x<y<z$. Hence $x<z$ is true.
2. Let $\emptyset \neq S \subseteq B$. Now S-viewed as a subset of Y - has a <-minimal member m. We cannot have $x<m$ with $x \in S$ in $(B,<)$ since then we have $x<m$ with $x \in S$ in $(Y,<)$.
4.3.7 Theorem. If there is a function $G: \mathbb{N}^{n+1} \rightarrow A$ satisfying (1) of 4.3.3, then it is unique.

Proof. Suppose we have two such functions, G and G^{\prime} that satisfy (1) for given H and K. If G and G^{\prime} differ, then there is an argument (a, \mathbf{b}) such that $G(a, \mathbf{b}) \neq G^{\prime}(a, \mathbf{b})$ then there is -by Lemma 4.3.5- $\mathbf{a} \prec$-minimal such argument, say, (m, \mathbf{c}), in the set $T=\left\{(a, \mathbf{b}): G(a, \mathbf{b}) \neq G^{\prime}(a, \mathbf{b})\right\}$. So

$$
\begin{equation*}
G(m, \mathbf{c}) \neq G^{\prime}(m, \mathbf{c}) \tag{*}
\end{equation*}
$$

Now, (m, \mathbf{c}) is not \prec-minimal in \mathbb{N}^{n+1} since on such inputs we have $G(0, \mathbf{d})=$ $H(\mathbf{d})=G^{\prime}(0, \mathbf{d})$. Thus, in particular, $m>0$.

But then, by (1) of 4.3.3 we compute each of $G(m, \mathbf{c})$ and $G^{\prime}(m, \mathbf{c})$ by the second equation as

$$
K(m-1, \mathbf{c},\{G(0, \mathbf{c}), G(1, \mathbf{c}), \ldots, G(m-1, \mathbf{c})\})
$$

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.
since minimality of (m, \mathbf{c}) in the set T entails

$$
G(i, \mathbf{c})=G^{\prime}(i, \mathbf{c}), \text { for } i=0,1, \ldots m-1
$$

Since K is single-valued (function!) we have $G(m, \mathbf{c})=G^{\prime}(m, \mathbf{c})$, contradicting $(*)$. Thus $T=\emptyset$ and therefore $G(a, \mathbf{b})=G^{\prime}(a, \mathbf{b})$, for all $(a, \mathbf{b}) \in \mathbb{N}^{n+1}$. For short, the functions G and G^{\prime} are the same.
4.3.8 Theorem. There is a function $G: \mathbb{N}^{n+1} \rightarrow A$ satisfying (1) of 4.3.3.

Proof. The idea is simple: Build the function by stages as an infinite set of building blocks. Each block is a restriction of G-that is, a partial table for G - so that the domain of the restriction is an "initial segment" of \mathbb{N}^{n+1} determined by some point ("point" is synonymous to "element") (m, \mathbf{b}). Thus the "general" segment is the set

$$
S_{(m, \mathbf{b})} \stackrel{D e f}{=}\{(a, \mathbf{b}):(a, \mathbf{b}) \prec(m, \mathbf{b})\} \cup\{(m, \mathbf{b})\}
$$

The notation " $S_{(m, \mathbf{b})}$ " reflects " S " for segment, subscripted with the defining point (m, \mathbf{b}). Once you have all the building blocks, you put them together to get the G you want.

Let us call $G_{(m, \mathbf{b})}$ the function (if it exists) from $S_{(m, \mathbf{b})} \rightarrow A$ that satisfies (1) of 4.3.3 if we replace the G there by $G_{(m, \mathbf{b})}$ everywhere.
(2) Why am I emphasising "the"? Because $S_{(m, \mathbf{b})}$ inherits MC from N^{n}. Cf. 4.3 .6 .

II And then 4.3 .7 applies to $G_{(m, \mathbf{b})}: S_{(m, \mathbf{b})} \rightarrow A$ as the proof of 4.3 .7 applies unchanged (just change \mathbb{N}^{n+1} and G to $S_{(m, \mathbf{b})}$ and $G_{(m, \mathbf{b})}$ respectively; all else is the same in the proof).

We have one more important (for this proof) observation related to uniqueness: If $(x, \mathbf{b}) \prec(y, \mathbf{b})$, then $G_{(x, \mathbf{b})}(u, \mathbf{b})=G_{(y, \mathbf{b})}(u, \mathbf{b})$, for all $u \leq x \dagger^{\dagger}$

Indeed, if $G_{(x, \mathbf{b})}$ and $G_{(y, \mathbf{b})}$ exist, then they both satisfy (1) of 4.3 .3 on the subset $S_{(x, \mathbf{b})}$ of $S_{(y, \mathbf{b})}$.

Our next task is simply to show that for each $(m, \mathbf{b}) \in \mathbb{N}^{n+1}$,

$$
\text { the function } G_{(m, \mathbf{b})}: S_{(m, \mathbf{b})} \rightarrow A \text { that satisfies (1) in } 4.3 .3 \text { exists }
$$

where we changed \mathbb{N}^{n+1} and G into $S_{(m, \mathbf{b})}$ and $G_{(m, \mathbf{b})}$ respectively.
We do so constructively - that is, show how each $G_{(m, \mathbf{b})}: S_{(m, \mathbf{b})} \rightarrow A$ is built - by CVI on the variable (m, \mathbf{b}) along the order \prec over \mathbb{N}^{n+1}.

1. Basis: For any minimal $(0, \mathbf{b}) \not{ }^{\dagger}$ we have $S_{(0, \mathbf{b})}=\{(0, \mathbf{b})\}$. Thus, using the first equation of (1) in 4.3.3 we set

$$
G_{(0, \mathbf{b})}=\{((0, \mathbf{b}), H(\mathbf{b}))\} \AA
$$

${ }^{\dagger}$ Here " \leq " is, of course, the "less-than-or-equal" on \mathbb{N}.
\ddagger We remarked that the $(0, \mathbf{b})$ for various $\mathbf{b} \in \mathbb{N}^{n}$ are the \prec-minimal points in \mathbb{N}^{n+1}.
${ }^{\S}$ We still remember that a function is a set of pairs! This one has just one pair.
2. I.H. Assume that for all $(x, \mathbf{b}) \prec(m, \mathbf{b})^{\dagger}$ we have built $G_{(x, \mathbf{b})}: S_{(x, \mathbf{b})} \rightarrow A$ all of which satisfy (the two equations of) (1) of 4.3.3.
In view of the boxed statement above, $G_{(m, \mathbf{b})}$ coincides with each $G_{(x, \mathbf{b})}$ -for $(x, \mathbf{b}) \prec(m, \mathbf{b})$ - on the latter's domain. Thus I need only add one input/output pair to $\bigcup_{(x, \mathbf{b}) \prec(m, \mathbf{b})} G_{(x, \mathbf{b})}=G_{(m-1, \mathbf{b})}$

Why is this last "=" correct?
at input (m, \mathbf{b}) to obtain $G(m, \mathbf{b})$.
To do so I simply use (1) of 4.3.3, second equation. The I/O pair added to obtain $G_{(m, \mathbf{b})}$ is

$$
\left((m-1, \mathbf{b}), K\left(m-1, \mathbf{b},\left\{G_{(m-1, \mathbf{b})}(0, \mathbf{b}), \ldots, G_{(m-1, \mathbf{b})}(m-1, \mathbf{b})\right\}\right)\right)
$$

It is clear that on any input (u, \mathbf{b}), whether the just constructed relation $G_{(m, \mathbf{b})}$ "thinks" that it is $G_{(x, \mathbf{b})}$ or $G_{(y, \mathbf{b})}$ it will give the same output due the boxed statement above. Thus, the relation $G_{(x, \mathbf{b})}$ is a function.

It is now time to put all the $G_{(x, \mathbf{b})}$ together to form $G: \mathbb{N}^{n+1} \rightarrow A$. Just define G by

$$
\begin{equation*}
G \stackrel{\text { Def }}{=} \bigcup_{(x, \mathbf{b}) \in \mathbb{N}^{n+1}} G_{(x, \mathbf{b})} \tag{*}
\end{equation*}
$$

Observe regarding G :

1. As a relation it is total on the left field \mathbb{N}^{n+1} because it is defined on the arbitrary $(x, \mathbf{b}) \in \mathbb{N}^{n+1}$ since $G_{(x, \mathbf{b})}: S_{(x, \mathbf{b})} \rightarrow A$ is.
2. $\operatorname{ran}(G) \subseteq A$. Because it is so for each $G_{(x, \mathbf{b})}: S_{(x, \mathbf{b})} \rightarrow A$.
3. G is single-valued, hence a function from \mathbb{N}^{n+1} to A, since the value $G(u, \mathbf{b})$ does not depend on which $G_{(x, \mathbf{b})}: S_{(x, \mathbf{b}) \rightarrow A}$ we used to obtain it as $G_{(x, \mathbf{b})}(u, \mathbf{b})$ (by boxed statement above).

Finally,
4. G satisfies (1) of 4.3 .3 since by $(*)$, for any $(x, \mathbf{b}) \in \mathbb{N}^{n+1}, G(x, \mathbf{b})=$ $G_{(x, \mathbf{b})}(x, \mathbf{b})$, and $G_{(x, \mathbf{b})}(x, \mathbf{b})$ is constructed to obey the two equations of (1) of 4.3.3. for all $x \geq 0$ and $\mathbf{b} \in \mathbb{N}^{n}$.

Let us see some examples:
4.3.9 Example. We know that 2^{n} means

$$
\overbrace{2 \times 2 \times 2 \times \ldots \times 2}^{n 2 s}
$$

[^1]But ". ..", or "etc.", is not MATH! That is why we gave at the outset of this section the definition 4.3.1.

Applied to the case $a=2$ we have

$$
\begin{align*}
& 2^{0}=1 \\
& 2^{n+1}=2 \times 2^{n} \tag{1}
\end{align*}
$$

We know from 4.3.8 and 4.3.7 that both (1) above and the definition in 4.3.1 define a unique function, each satisfying its defining equations.

For the function that for each n outputs 2^{n} we can give an alternative definition that uses " + " rather than " \times ":

$$
\begin{aligned}
& 2^{0}=1 \\
& 2^{n+1}=2^{n}+2^{n}
\end{aligned}
$$

4.3.10 Example. Let $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ be given. How can I define $\sum_{i=0}^{n} f(i, \mathbf{b})$ -for any $\mathbf{b} \in \mathbb{N}^{n}$ - other than by the sloppy

$$
f(0, \mathbf{b})+f(1, \mathbf{b})+f(2, \mathbf{b})+\ldots+f(i, \mathbf{b})+\ldots+f(n, \mathbf{b}) ?
$$

By induction/recursion, of course:

$$
\begin{align*}
& \sum_{i=0}^{0}=f(0, \mathbf{b}) \\
& \sum_{i=0}^{n+1}=\left(\sum_{i=0}^{n} f(i, \mathbf{b})\right)+f(n+1, \mathbf{b}) \tag{1}
\end{align*}
$$

4.3.11 Example. Let $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ be given. How can I define $\prod_{i=0}^{n} f(i, \mathbf{b})$ -for any $\mathbf{b} \in \mathbb{N}^{n}$ - other than by the sloppy

$$
f(0, \mathbf{b}) \times f(1, \mathbf{b}) \times f(2, \mathbf{b}) \times \ldots \times f(i, \mathbf{b}) \times \ldots \times f(n, \mathbf{b}) ?
$$

By induction/recursion, of course:

$$
\begin{align*}
& \prod_{i=0}^{0}=f(0, \mathbf{b}) \\
& \prod_{i=0}^{n+1}=\left(\prod_{i=0}^{n} f(i, \mathbf{b})\right)+f(n+1, \mathbf{b}) \tag{2}
\end{align*}
$$

Again, by 4.3.8 and 4.3.7, each of (1) and (2) define a unique function, \sum and Π that behaves as required. Really? For example, the first equation of (1) gives us the one-term sum, $f(0, \mathbf{b})$. It is correct. Assume (I.H. by simple induction on n) that the term $\sum_{i=0}^{n} f(i, \mathbf{b})$ correctly captures the sloppy

$$
f(0, \mathbf{b})+f(1, \mathbf{b})+f(2, \mathbf{b})+\ldots+f(i, \mathbf{b})+\ldots+f(n, \mathbf{b})
$$

that indicates the sum of the first $n+1$ terms of the type $f(i, \mathbf{b})$ for $i=$ $0,1,2, \ldots, n$. But then, clearly the second equation of (1) correctly defines the sum of the first $n+2$ terms of the above type, by adding $f(n+1, \mathbf{b})$ to $\sum_{i=0}^{n} f(i, \mathbf{b})$.

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.
4.3.12 Example. Here is a function with huge output! Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
\begin{align*}
& f(0)=1 \\
& f(n+1)=2^{f(n)} \tag{3}
\end{align*}
$$

What does $f(n)$ look like in sloppy notation? Well,

$$
f(0)=1, \quad f(1)=2^{f(0)}=2, \quad f(2)=2^{f(1)}=2^{2}, \quad f(3)=2^{f(2)}=2^{2^{2}}
$$

Hmm! Is the guess that $f(n)$ is a ladder of $n 2$ s? Yes! Let's verify by induction:

1. Basis. $f(0)=1$. A ladder of zero 2 s . Correct.
2. I.H. Fix n and assume that

$$
\left.f(n)=2^{2^{2}}\right\} n 2 \mathrm{~s}
$$

A ladder of n 2 s .
3. I.S. Thus $f(n+1)=2^{f(n)}$, so we put the ladder of $n 2$ s of the I.H. as the exponent of 2 -forming a ladder of $n+12$ s- to obtain $f(n+1)$. Done!
4.3.13 Example. (Fibonacci; a comment) This short example is to be clear, as in the case of induction proofs, that the "Basis" case is for minimal elements (compare with Exercise 4.2.13, case 5).
$F_{0}=0$
$F_{1}=1$
and for $n \geq 1$
$F_{n+1}=F_{n}+F_{n-1}$
In the above " $F_{1}=1$ " is NOT a "Basis case" because 1 is not minimal in \mathbb{N} ! (" $F_{0}=0 "$ is the Basis case, corresponding to the first equation in (1) of 4.3.3). So what is " $F_{1}=1$ "? It is a boundary case of the second equation in the general Definition 4.3.3. This equation, in the Fibonacci case, can be rewritten as

$$
\begin{aligned}
& F_{n+1}=\text { if } n=0 \text { then } 1 \\
& \quad \text { else } F_{n}+F_{n-1}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ The "sequence" $F_{0}, F_{0}, F_{0}, \ldots$ is, of course, a total function from $F: \mathbb{N} \rightarrow \mathbb{N}$.

[^1]: ${ }^{\dagger}$ Recall that for $\mathbf{b} \neq \mathbf{c},(x, \mathbf{b})$ and (y, \mathbf{c}) are not comparable.

