4.2. Induction

In Remark 3.1.77 we concluded with a formulation of the minimal condition (MC) for any order $<$ as follows:

An order $<$ on a class \mathbb{A} has MC is capture by the statement
For any "property", that is, formula $F[x]$-recall that this notation, square brackets, indicates our interest in one among the, possibly many, free variables of F - we have that the following is true

$$
\begin{equation*}
(\exists a) F[a] \rightarrow(\exists a)(F[a] \wedge \neg(\exists y)(y<a \wedge F[y])) \tag{1}
\end{equation*}
$$

So let $<$ be the standard order on \mathbb{N}. We have used the fact that it is a total order (satisfies trichotomy) and that every nonempty subset of \mathbb{N} has a minimal -hence unique minimum- element.

Pause. Why unique and minimum? <
So let us fix in the rest of this section $<$ to be the "less than" order on \mathbb{N}, until we indicate otherwise.

Let us rewrite (1) for $\neg P[x]$ where $P[x]$ is arbitrary. We get the theorem

$$
\begin{equation*}
(\exists x) \neg P[x] \rightarrow(\exists x)(\neg P[x] \wedge \neg(\exists y)(y<x \wedge \neg P[y])) \tag{2}
\end{equation*}
$$

Using the equivalence theorem (p 90) and the 7 , we obtain from (2)

$$
\neg(\forall x) P[x] \rightarrow \neg(\forall x) \neg(\neg P[x] \wedge(\forall y) \neg(y<x \wedge \neg P[y]))
$$

and then (the tautology known as "contrapositive" is used) also

$$
(\forall x) \neg(\neg P[x] \wedge(\forall y) \neg(y<x \wedge \neg P[y])) \rightarrow(\forall x) P[x]
$$

Using the tautology

$$
\neg(A \wedge B) \equiv \neg A \vee \neg B
$$

and the equivalence theorem, we transform the above to this theorem:

$$
(\forall x)(P[x] \vee \neg(\forall y)(\neg y<x \vee P[y])) \rightarrow(\forall x) P[x]
$$

Again, this time using the tautology

$$
\neg A \vee B \equiv A \rightarrow B
$$

(twice) and the equivalence theorem, we transform the above to this theorem:

$$
\begin{equation*}
(\forall x)((\forall y)(y<x \rightarrow P[y]) \rightarrow P[x]) \rightarrow(\forall x) P[x] \tag{3}
\end{equation*}
$$

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.
(3) is the principle of strong induction, or complete induction, or course-of-values induction that you probably encountered at school, and the above work shows that it is equivalent to the least principle! (Clearly we can reverse all the steps we took above as all were equivalences!)

Let us render (3) more recognisable: By applying MP (elaborate this!) I can transform (3) in "rule of inference form", indeed I will write it like a rule that says, like all rules do, "if you proved my numerator, then my denominator is also proved!"

$$
\frac{(\forall x)((\forall y)(y<x \rightarrow P[y]) \rightarrow P[x])}{(\forall z) P[z]}
$$

Dropping the \forall-prefix we have the rule in the form:

$$
\begin{equation*}
\frac{(\forall y)(y<x \rightarrow P[y]) \rightarrow P[x]}{P[z]} \tag{CVI}
\end{equation*}
$$

"(CVI)" for Course-of-Values Induction. (CVI) says
To prove $P[x]$ (for all x is implied!) do as follows:
Step (a) Fix an arbitrary x-value. Now, assume $(\forall y)(y<x \rightarrow P[y])$ for said x. We call the assumption Induction Hypothesis, for short,
I.H.

Step (b) Next prove $P[x]$, for the same fixed unspecified x. This proof step we call the Induction Step or I.S.
2) Note that what is described by (a) and (b) is precisely an application
I. of the Deduction theorem towards proving "If, for all $y<x, P[y]$ is true, then $P[x]$ is true", that is, proving the implication on the numerator of (CVI) for any given x.

Step (c) If you have done Step (a) and Step (b) above, then you have proved $P[x]$ (for all x is implied!)

Important.

- Step (a) above says "arbitrary x ".

So, I should not leave any x-value out of the proof!
But how do I prove the I.S. for $x=0$? There is no I.H. to rely one (no numbers below $x=0$). No problem: The numerator implication in (CVI) now reads

$$
(\forall y)(y<0 \rightarrow P[y]) \rightarrow P[0]
$$

The lhs of " \rightarrow " is true since $y<0$ is false. Thus, to ensure the truth of the implication I must prove $P[0]$.
This step was hidden in Steps (a) - (b) above. It is called the Basis of the induction!

- The I.H. is usually stated in English: Assume $P[y]$ (true), for all $y<x$.

Above we admitted much less than what we actually proved. \mathbb{N} does not have the monopoly of the CVI methodology in proofs! So let us shift gear and have $<$ indicate in the corollary below an arbitrary order with MC on an arbitrary set A - not a set of numbers necessarily.
4.2.1 Corollary. If $(A,<)$ is a POset with $M C$, then we can prove a property $P[x]$, for all $x \in A$, by doing precisely the steps of CVI:

1. Prove/verify $P[a]$, for every $<$-minimal member of A. This is the Basis.
2. Fix an arbitrary b and assume $P[x]$, for all $x<b$. This is the I.H.
3. Finally, do the I.S.: For the fixed b in 2. prove $P[b]$ using 1. and 2.

Proof. Nothing changes in the derivation of the equivalence between MC and CVI above. Just forget the opening line "So let < be the standard order on \mathbb{N}."!

The only change is in applying CVI in the general case is in the Basis step: Instead of proving/verifying $P[0]$ for the (unique) minimum element of \mathbb{N}, we prove/verify $P[x]$ for all minimal elements of A, which may be infinitely many!

There is another simpler induction principle that we call it, well, simple induction:

$$
\begin{equation*}
\frac{P[0], P[x] \rightarrow P[x+1]}{P[x]} \tag{SI}
\end{equation*}
$$

"(SI)" for Simple Induction. That is, to prove $P[x]$ for all x (denominator) do three things:

Step 1. Prove/verify $P[0]$
Step 2. Assume $P[x]$ for fixed ("frozen") x (unspecified!).
Step 3. prove $P[x+1]$ for that same x. The assumption is the I.H. for simple induction. The I.S. is the step that proves $P[x+1]$.

2 Note that what is described here is precisely an application of the Deduction theorem towards proving " $P[x] \rightarrow P[x+1]$ ", that is, proving the implication for any given x.

Step 4. If you have done Step 1. through Step 3. above, then you have proved $P[x]$ (for all x is implied!)

Is the principle (SI) correct? I.e., if I do all that the numerator of (SI) asks me to do (or Steps 1. - 3.), then do I really get that the denominator is true (for all x implied)?
4.2.2 Theorem. The validity of (SI) is a consequence of $M C$ on \mathbb{N}.

Proof. Suppose (SI) is not correct. Then, for some property $P[x]$, despite having completed Steps 1. - 3., yet, $P[x]$ is not true for all x !

Well, if so, let $n \in \mathbb{N}$ be smallest such that $P[n]$ is false. Now, $n>0$ since I did verify the truth of $P[0]$ (Step 1.). Thus, $n-1 \geq 0$. But then, when I proved " $P[x] \rightarrow P[x+1]$ for all x (in \mathbb{N})" -in Steps 2. and 3.- this includes proving the case

$$
\begin{equation*}
P[n-1] \rightarrow P[n] \tag{4}
\end{equation*}
$$

But by the smallest-ness of $n, P[n-1]$ is true, hence $P[n]$ is true by the truth table of " \rightarrow ". I have just got a contradiction! I conclude that no such smallest n exists, i.e., $P[x]$ is true (for all $x \in \mathbb{N}$). (SI) works!
How do the simple and course-of-values induction relate? They are equivalent tools! Here is why:
4.2.3 Theorem. From the validity of (SI) I can obtain the validity of (CVI).

Proof. Suppose that I have
verified the numerator of (CVI), for $P[x]$, via Steps (a) and (b) p 93
but let me pretend that
I do not know if doing so guarantees the truth of the denominator, $P[x]$
Let me show that it does, by doing simple induction SI using a related property, $Q[x]$.

I define $Q[x]$, for all x in \mathbb{N}, by

$$
\begin{equation*}
Q[x] \stackrel{\text { Def }}{\equiv} P[0] \wedge P[1] \wedge \ldots \wedge P[x] \tag{5}
\end{equation*}
$$

Now, as we emphasised on p 92, "property" is colloquial for formula. But formulas do not have variable length! The length of $Q[x]$ above increases or decreases with the value of its input n. Well, (5) is also a colloquialism to keep things intuitively clear! The mathematically correct definition of Q is the following,

$$
Q[x] \stackrel{\text { Def }}{\equiv}(\forall z)(z<x \rightarrow P[z])
$$

but now that the point has been made, I will continue using the form (5).
So, my job is to show that
if for some property $P[x]$ I proved the truth of the numerator of (CVI), then

$$
\begin{equation*}
\text { it is guaranteed that } P[x] \text { is true, for all } x \tag{6}
\end{equation*}
$$

I prove this by showing property $Q[x]$ is true, for all x, using SI.
To this end I have to do

SI 1) Verify $Q[x]$ for $x=0$ (Basis). But $Q[0]$-by (5) - is just $P[0]$, which I proved true as part of my due Basis for CVI (blue underlined if-clause above).

SI 2) For $x>0$, show,

$$
\begin{equation*}
Q[x-1] \rightarrow Q[x] \text { is true } \tag{7}
\end{equation*}
$$

I argue that I already showed (7) by proving the CVI numerator:

- I proved

$$
P[0] \wedge P[1] \wedge \ldots \wedge P[x-1] \rightarrow P[x]
$$

- By tautological implication from the above I get also

$$
P[0] \wedge P[1] \wedge \ldots \wedge P[x-1] \rightarrow P[0] \wedge P[1] \wedge \ldots \wedge P[x-1] \wedge P[x]
$$

- But the above says $Q[x-1] \rightarrow Q[x]$ is true. This is (7).

By SI, I have proved $Q[x]$ is true, for all x. But by (5), this trivially implies that $P[x]$ is true, for all x. I proved (6).

4.2.4 Remark.

1. So, for $\mathbb{N}, \mathrm{MC}, \mathrm{CVI}$ and SI are all equivalent. We have already indicated that MC and CVI are equivalent. The work on CVI vs. SI 4.2.3 and SI vs. MC 4.2.2 is summarised as

$$
M C \Longrightarrow S I \Longrightarrow C V I \Longrightarrow M C
$$

which establishes the equivalence claim about all three.
2. When do I use CVI and when SI? SI is best to use when to prove $P[x]$ (in the I.S.) I only need to know $P[x-1]$ is true. CVI is used when we need a more flexible I.H. that $P[n]$ is true for all $n<x$. See the examples below!
3. " 0 " is the boundary case if the claim we are proving is valid "for all $n \in \mathbb{N}$ ", or simply put, "for $n \geq 0$ ". If the claim is "for all $n \geq a, P[n]$ is true" then usually $P[n]$ is meaningless for $x<a$ and thus the Basis is for $n=a$.
4.2.5 Example. This is the "classical first example of induction use" in the discrete math bibliography! Prove that

$$
\begin{equation*}
0+1+2+\ldots+n=\frac{n(n+1)}{2} \tag{1}
\end{equation*}
$$

So, the property to prove is the entire expression (1). On must learn to not have to rename the "properties to use" as " $P[n]$ ".

I will use SI. So let us do the Basis. Boundary case is $n=0$. We verify: $l h s=0 . r h s=(0.1) / 2=0$. Good!

Fix n and tale the expression (1) as I.H.
Do the I.S. Prove:

$$
0+1+2+\ldots+n+(n+1)=\frac{(n+1)(n+2)}{2}
$$

Here it goes

$$
\begin{aligned}
0+1+2+\ldots+n+(n+1) & \text { using I.H. } \frac{n(n+1)}{2}+(n+1) \\
& =(n+1)(n / 2+1) \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

I will write more concisely in the examples that follow.
4.2.6 Example. Same as above but doing away with the " $0+$ ". Again, I use SI.

$$
\begin{equation*}
1+2+\ldots+n=\frac{n(n+1)}{2} \tag{1}
\end{equation*}
$$

- Basis. $n=1$: (1) becomes $1=(1.2) / 2$. True.
- Take (1) as I.H. with fixed n.
- I.S.:

$$
\begin{aligned}
1+2+\ldots+n+(n+1) & \stackrel{\text { using I.H. }}{\underline{\underline{n}}} \frac{n(n+1)}{2}+(n+1) \\
& =(n+1)(n / 2+1) \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

4.2.7 Example. Prove

$$
\begin{equation*}
1+2+2^{2}+\ldots 2^{n}=2^{n+1}-1 \tag{1}
\end{equation*}
$$

By SI.

- Basis. $n=0.1=2^{0}=2^{1}-1$. True.
- As I.H. take (1) for fixed n.
- I.S.

$$
\begin{aligned}
1+2+2^{2}+\ldots+2^{n}+2^{n+1} & \text { using I.H. } \\
= & 2^{n+1}-1+2^{n+1} \\
& =2 \cdot 2^{n+1}-1 \\
& =2^{n+2}-1
\end{aligned}
$$

4.2.8 Example. An inequality! I prove that

$$
\begin{equation*}
n<2^{n} \tag{1}
\end{equation*}
$$

for all $n \geq 0$.
I do SI on n.

- Basis. $0<2^{0}=1$ is true.
- As I.H. fix n and assume (1).
- For the I.S. we have $2^{n+1}=2^{n}+2^{n}$. By the I.H. $2^{n}>n$ but also $2^{n} \geq 1$. Thus, adding these two inequalities I get

$$
2^{n+1}=2^{n}+2^{n}>n+1
$$

4.2.9 Example. (Euclid) Every natural number $n \geq 2$ is expressible as a product of primes.

A "product" includes the trivial case of one factor.
I do CVI (as you will see why!)

- Basis: For $n=2$ we are done since 2 is a prime ${ }^{\dagger}$
- I.H. Fix an n and assume the claim for all k, such that $2 \leq k<n$.
- I.S.: Prove for n : Two subcases:

1. If n is prime, then nothing to prove! Done.
2. If not, then $n=a \cdot b$, where $a \geq 2$ and $b \geq 2$. By I.H ${ }^{\text {f }}$ each of a and b are products of primes, thus so is $n=a \cdot b$.
4.2.10 Example. (Euclid) Every natural number $n \geq 0$ is expressible base-10 as an expression

$$
\begin{equation*}
n=a_{m} 10^{m}+a_{m-1} 10^{m-1}+\cdots+a_{1} 10+a_{0} \tag{1}
\end{equation*}
$$

where each a_{i} satisfies $0 \leq a_{i}<10$
Proof by CVI again. You will see why.

- Basis. For $n=0$ the expression " 0 " has the form of the ohs of (1) and satisfies inequality (2).

[^0]- Fix an $n>0$ and assume (I.H.) that if $k<n$, then k can be expressed as in (1).
- For the I.S. express the n of the I.H. using Euclid's theorem 3.1.47) as

$$
n=10 q+r
$$

where $0 \leq r<10$. By the I.H. -since $q<n-$ let

$$
q=b_{t} 10^{t}+b_{t-1} 10^{t-1}+\cdots+b_{1} 10+b_{0}
$$

with $0 \leq b_{j}<10$.
Then

$$
\begin{aligned}
& n=10 q+r \\
& n=10\left(b_{t} 10^{t}+b_{t-1} 10^{t-1}+\cdots+b_{1} 10+b_{0}\right)+r \\
& n=b_{t} 10^{t+1}+b_{t} 10^{t}+\cdots+b_{1} 10^{2}+b_{0} 10+r
\end{aligned}
$$

We see n has the right form since $0 \leq r<10$.
4.2.11 Example. Another inequality. Let p_{n} denote the n-th prime number, for $n \geq 0$. Thus $p_{0}=2, p_{1}=3, p_{2}=5$, etc.

We prove that

$$
\begin{equation*}
p_{n} \leq 2^{2^{n}} \tag{1}
\end{equation*}
$$

I use CVI on n. This is a bit of a rabbit out of a hat if you never read Euclid's proof that there are infinitely many primes.

- Basis $p_{0}=2 \leq 2^{2^{0}}=2^{1}=2$.
- Fix $n>0$ and take (1) as I.H.
- The I.S.: I will work with the fixed n above and the expression (product of primes, plus 1 ; this is inspired from Euclid's proof quoted above).

$$
p_{0} p_{1} p_{2} \cdots p_{n}+1
$$

By the I.H. I have

$$
\begin{aligned}
p_{0} p_{1} p_{2} \cdots p_{n}+1 & \leq 2^{2^{0}} 2^{2^{1}} 2^{2^{2}} \cdots 2^{2^{n}}+1 & & \text { by I.H. } \\
& =2^{2^{0}+2^{1}+2^{2}+\cdots+2^{n}}+1 & & \text { algebra } \\
& =2^{2^{n+1}-1}+1 & & \text { by 4.2.7 } \\
& =2^{2^{n+1}-1}+2^{2^{n+1}-1} & & \text { smallest } n \text { possible is } n=1 \\
& =2^{1} \cdot \cdot^{2^{n+1}-1} & & \\
& =2^{2^{n+1}} & &
\end{aligned}
$$

Now we have two cases on $q=p_{0} p_{1} p_{2} \cdots p_{n}+1$

1. q is a prime. Because of the " $+1 " q$ is different from all p_{i} in the product, so q is p_{n+1} or p_{n+2} or p_{n+3} or \ldots
Since the sequence of primes is strictly increasing, p_{n+1} is the least that q can be.
Thus

$$
p_{n+1} \leq p_{0} p_{1} p_{2} \cdots p_{n}+1 \leq 2^{2^{n}}
$$

in this case.
2. q is composite. By 4.2.9 some prime r divides q. Now, none of the

$$
p_{0}, p_{1}, p_{2}, \cdots, p_{n}
$$

divides q because of the " +1 ". Thus r is different from all of them, so it must be one of p_{n+1} or p_{n+2} or p_{n+3} or \ldots
Thus,

$$
p_{n+1} \leq r<q=p_{0} p_{1} p_{2} \cdots p_{n}+1 \leq 2^{2^{n}}
$$

Done!

4.2.12 Example. Let

$$
\begin{aligned}
& b_{1}=3, b_{2}=6 \\
& b_{k}=b_{k-1}+b_{k-2}, \text { for } k \geq 3
\end{aligned}
$$

Prove by induction that b_{n} is divisible by 3 for $n \geq 1$. (Be careful to distinguish between what is basis and what are cases arising from the induction step! As you know, our text is careless about this.)
Proof. So the boundary condition is (from the underlined part above) $n=1$. This is the Basis.

1. Basis: For $n=1$, I have $a_{1}=3$ and this is divided by 3 . We are good.
2. I.H. Fix n and assume claim for all $k<n$.
3. I.S. Prove claim for the above fixed n. There are two cases, as the I.H. is not useable for $n=2$. Why? Because it would require entries b_{0} and b_{1}. The red entry does not exist since the sequence starts with b_{1}. So,

Case 1. $n=2$. Then I am OK as $b_{2}=6$; it is divisible by 3 .
Case 2. $n>2$. Is b_{n} divisible by 3 ? Well, $b_{n}=b_{n-1}+b_{n-2}$ in this case. By I.H. (valid for all $k<n$) I have that $b_{n-1}=3 t$ and $b_{n-2}=3 r$, for some integers t, r. Thus, $b_{n}=3(t+r)$. Done!

Here are a few additional exercises for you to try -please do try!

4.2.13 Exercise.

1. Prove that $2^{2 n+1}+3^{2 n+1}$ is divisible by 5 for all $n \geq 0$.
2. Using induction prove that $1^{3}+2^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$, for $n \geq 1$.
3. Using induction prove that $\sum_{i=1}^{n+1} i 2^{i}=n 2^{n+2}+2$, for $n \geq 0$.
4. Using induction prove that $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$, for $n \geq 2$.
5. Let

$$
\begin{aligned}
& b_{0}=1, b_{1}=2, b_{3}=3 \\
& b_{k}=b_{k-1}+b_{k-2}+b_{k-3}, \text { for } k \geq 3
\end{aligned}
$$

Prove by induction that $b_{n} \leq 3^{n}$ for $n \geq 0$. (Once again, be careful to distinguish between what is basis and what are cases arising from the induction step!)

[^0]: \dagger You will recall that a number $\mathbb{N} \ni n>1$ is a prime eff its only factors are 1 and n.
 \ddagger You see? a and b cannot be both $n-1$ to apply SI's I.H. In fact, if $n=(n-1)^{2}$, then $n=n^{2}-2 n+1$ or $n^{2}-3 n+1=0$. This equation has no natural number roots! So SI would not help with its rigid I.H.

