A SIMPLE INDUCTION PROOF

Hi all,
Here is another practice exercise!
Find a simple Big-O upper bound in terms of a simple function of n (and prove why it is an upper bound) for

$$
\begin{equation*}
1+2+3+\ldots+n \tag{1}
\end{equation*}
$$

or more precisely

$$
\sum_{i=1}^{n} i
$$

While you can easily find such a bound if you know the closed form formula for (1), this is a bad way of going about it (do only if you are desperate :)

The thing is, we do not always know a closed form for a sum like

$$
\sum_{i=1}^{n} f(i)
$$

where f is some function. E.g., do you know a closed form for $\sum_{i=1}^{n} i^{5}$? I don't either, but I can sure give you a "tight" ${ }^{2}$ big-oh bound!

So, read the 6.1 in the last chapter that I uploaded today (March 22, 2020; Notes \#11), and send me your solutions tomorrow between 2:00pm - 3:00pm via Moodle upload (Moodle area "practice \#3").

[^0]
[^0]: ${ }^{2}$ Almost any sum you throw at me is $O\left(2^{2^{2^{2^{2^{n}}}}}\right)$, but this is TOO pessimistic. A tight bound is as close as it gets to what you are bounding!

