
Chapter 1

Some Elementary Informal
Set Theory

Set theory is due to Georg Cantor. “Elementary” in the title above does not
apply to the body of his work, since he went into considerable technical depth
in this, his new theory. It applies however to our coverage as we are going to
restrict ourselves to elementary topics only.

Cantor made many technical mistakes in the process of developing set theory,
some of considerable consequence. The next section is about the easiest and
most fundamental of his mistakes.

How come he made mistakes? The reason is that his theory was not based
on axioms and rigid rules of reasoning —a state of affairs for a theory that we
loosely characterise as “informal”.

At the opposite end of informal we have the formal theories that are based
on axioms and logic and are thus “safer” to develop (they do not lead to obvious
contradictions).

One cannot fault Cantor for not using logic in arguing his theorems —that
process was not invented when he built his theory— but then, a fortiori, mathe-
matical logic was not invented in Euclid’s time either, and yet he did use axioms
that stated how his building blocks, points, lines and planes interacted and be-
haved!

Guess what: Euclidean Geometry leads to no contradictions.

The problem with Cantor’s set theory is that anything goes as to what
sets are and how they come about. He neglected to ask the most fundamental
question: “How are sets formed?”† He just sidestepped this and simply said
that a set is any collection. In fact he took the term “set” as just a synonym
for “collection”, “class”, “aggregate”, etc.

†It’s amazing how much trouble could be avoided if he had done so!
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Failure to ask and answer this question leads to “trouble”, which is the
subject matter of the next section.

One can still do “safe” set theory —devoid of “trouble”, that is— within
an informal (non axiomatic) setting, but we have to ask and answer how sets
are built first and derive from our answer some principles that will guide (and
protect!) the theory’s development! We will do so.

1.1. Russell’s “Paradox”

Cantor’s näıve (this adjective is not derogatory but is synonymous in the litera-
ture with informal and non axiomatic) set theory was plagued by paradoxes, the
most famous of which (and the least “technical”) being pointed out by Bertrand
Russell and thus nicknamed “Russell’s paradox”.†

His theory is the theory of collections (i.e., sets) of objects, as we mentioned
above, terms that were neither defined nor how they were built.‡

This theory studies operations on sets, properties of sets, and aims to use set
theory as the foundation of all mathematics. Naturally, mathematicians “do”
set theory of mathematical object collections —not collections of birds and other
beasts. We have learnt some elementary aspects of set theory at high school.
We will learn more in this course.

1. Variables. Like any theory, informal or not, informal set theory —a
safe variety of which we will develop here— uses variables just as algebra
does. There is only one type of variable that varies over set and over
atomic objects too, the latter being objects that have no set structure.
For example integers. We use the names A,B,C, . . . and a, b, c, . . . for
such variables, sometimes with primes (e.g., A′′) or subscripts (e.g., x23),
or both (e.g., x′′′

22, Y
′
42).

2. Notation. Sets given by listing. For example, {1, 2} is a set that contains
precisely the objects 1 and 2, while {1, {5, 6}} is a set that contains pre-
cisely the objects 1 and {5, 6}. The braces { and } are used to show the
collection/set by outright listing.

3. Notation. Sets given by “defining property”. But what if we cannot
(or will not) explicitly list all the members of a set? Then we may define

†From the Greek word “paradoxo” (παράδοξο) meaning against one’s belief or knowledge;
a contradiction.

‡This is not a problem in itself. Euclid too did not say what points and lines were; but
his axioms did characterise their nature and interrelationships: For example, he started from
these (among a few others) a priori truths (axioms): a unique line passes through two distinct
points; also, on any plane, a unique line l can be drawn parallel to another line k on the plane
if we want l to pass through a given point A that is not on k.

The point is:

� You cannot leave out both what the nature of your objects is and how they behave/interrelate
and get away with it! Euclid omitted the former but provided the latter, so all worked out. �
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what objects x get in the set/collection by having them to pass an entrance
requirement, P (x):

An object x gets in the set iff (if and only if ) P (x) is
true of said object.

Let us parse “iff”:

(a) The IF : So, IF P (x) is true, then x gets in the set (it passed the
“admission requirement”).

(b) The ONLY IF : So, IF x gets in the set, then the only way for this
to happen is for it to pass the “admission requirement”; that is, P (x)
is true.

In other words, “iff” (as we probably learnt in high school or some previ-
ous university course such as calculus) is the same thing as “is equivalent”:

“x is in the set” is equivalent to “P (x) is true”.

We denote the collection/set† defined by the entrance condition P (x) by

{x : P (x)} (1)

but also as
{x |P (x)} (1′)

reading it “the set of all x such that (this “such that” is the “:” or “|”)
P (x) is true [or holds]”

4. “x ∈ A” is the assertion that “object x is in the set A”. Of course, this
assertion may be true or false or “it depends”, just like the assertions of
algebra 2 = 2, 3 = 2 and x = y are so (respectively).

5. x /∈ A is the negation of the assertion x ∈ A.

6. Properties

• Sets are named by letters of the Latin alphabet (cf. Variables,
above). Naming is pervasive in mathematics as in, e.g., “let x = 5”
in algebra.

So we can write “let A = {1, 2}” and let “c = {1, {5, 6}}” to give
the names A and c to the two example sets above, ostensibly because
we are going to discuss these sets, and refer to them often, and it is
cumbersome to keep writing things like {1, {5, 6}}. Names are not
permanent ;‡ they are local to a discussion (argument).

†We have not yet reached Russell’s result, so keeping an open mind and humouring Cantor
we still allow ourselves to call said collection a “set”.

‡OK, there are exceptions: ∅ is the permanent name for the empty set —the set with
no elements at all— and for that set only; N is the permanent name of the set of all natural
numbers.

Russell’s Paradox; from the EECS 1028 lecture notes of G. Tourlakis, W 2020.



4 1. Some Elementary Informal Set Theory

• Equality of sets (repetition and permutation do not matter!)

Two sets A and B are equal iff they have the same members. Thus
order and multiplicity do not matter! E.g., {1} = {1, 1, 1}, {1, 2, 1} =
{2, 1, 1, 1, 1, 2}.

• The fundamental equivalence pertaining to definition of sets by “defin-
ing property”: So, if we name the set in (1) above, S, that is, if we
say “let S = {x : P (x)}”, then “x ∈ S iff P (x) is true”

� By the way, we almost never say “is true” unless we want to shout
out this fact. We would say instead: “x ∈ S iff P (x)”.

Equipped with the knowledge of the previous bullet, we see that the
symbol {x : P (x)} defines a unique set/collection: Well, say A and
B are so defined, that is, A = {x : P (x)} and B = {x : P (x)}. Thus

x ∈ A
A={x:P (x)}

iff P (x)
B={x:P (x)}

iff x ∈ B

thus

x ∈ A iff x ∈ B

and thus A = B. �

Let us pursue, as Russell did, the point made in the last bullet above. Take
P (x) to be specifically the assertion x /∈ x. He then gave a name to

{x : x /∈ x}

say, R. But then, by the last bullet above,

x ∈ R iff x /∈ x (2)

If we now believe,‡ as Cantor, the father of set theory did not question and went
ahead with it, that every P (x) defines a set, then R is a set.

� What is wrong with that? �

Well, if R is a set then this object has the proper type to be plugged into
the variable of type “math object”, namely, x, throughout the equivalence (2)
above. But this yields the contradiction

R ∈ R iff R /∈ R (3)

This contradiction is called the Russell’s Paradox.

‡Informal mathematics often relies on “I know so” or “I believe” or “it is ‘obviously’
true”. Some people call “proofs” like this —i.e., “proofs” without justification(s)— “proofs
by intimidation”. Nowadays, with the ubiquitousness of the qualifier “fake”, one could also
call them “fake proofs”.
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This and similar paradoxes motivated mathematicians to develop formal
symbolic logic and look to axiomatic set theory† as a means to avoid paradoxes
like the above.

Other mathematicians who did not care to use mathematical logic and ax-
iomatic theories found a way to do set theory informally, yet safely.

See, they asked and answered “how are sets formed?”‡

Read on!

†There are many flavours or axiomatisations of set theory, the most frequently used being
the “ZF” set theory, due to Zermelo and Fraenkel.

‡Actually, axiomatic set theory —in particular, its axioms are— is built upon the answers
this group came up with. This story is told at an advanced level in [Tou03].
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