3.1.3. Partial orders

This subsection introduces one of the most important kind of binary relations in set theory and mathematics in general: The partial order relations.

We will find the following definitions and notation useful in this subsection:
3.1.50 Definition. (Converse or inverse relation of \mathbb{P}) For any relation \mathbb{P}, the symbol \mathbb{P}^{-1} stands for the converse or inverse relation of \mathbb{P} and is defined as

$$
\begin{equation*}
\mathbb{P}^{-1}=\{(x, y): y \mathbb{P} x\} \tag{1}
\end{equation*}
$$

$x \mathbb{P}^{-1} y$ iff $y \mathbb{P} x$ is an equivalence that says exactly what (1) does.
3.1.51 Definition. (" $(a) \mathbb{P} "$ notation) For any relation \mathbb{P} we write " $(a) \mathbb{P} "$ to indicate the class - might fail to be a set- of all outputs of \mathbb{P} on (caused by) input a. That is,

$$
(a) \mathbb{P} \stackrel{\text { Def }}{=}\{y: a \mathbb{P} y\}
$$

If $(a) \mathbb{P}=\emptyset$, then \mathbb{P} is undefined at a-that is, $a \notin \operatorname{dom}(\mathbb{P})$. The underlined statement is often denoted simply by " $(a) \mathbb{P} \uparrow$ " and is naturally read as " \mathbb{P} is undefined at a ".

If $(a) \mathbb{P} \neq \emptyset$, then \mathbb{P} is defined at $a-$ that is, $a \in \operatorname{dom}(\mathbb{P})$. The underlined statement is often denoted simply by " $(a) \mathbb{P} \downarrow$ " and is naturally read as " \mathbb{P} is defined at a ".
3.1.52 Exercise. Give an example of a specific relation \mathbb{P} and one specific object (set or atom) a such that (a) \mathbb{P} is a proper class.
3.1.53 Remark. We note that for any \mathbb{P} and a,

$$
(a) \mathbb{P}^{-1}=\left\{y: a \mathbb{P}^{-1} y\right\}=\{y: y \mathbb{P} a\}
$$

Thus,

$$
(a) \mathbb{P}^{-1} \uparrow \text { iff } a \notin \operatorname{ran}(\mathbb{P})
$$

and

$$
(a) \mathbb{P}^{-1} \downarrow \text { iff } a \in \operatorname{ran}(\mathbb{P})
$$

3.1.54 Definition. (Partial order) A relation \mathbb{P} is called a partial order or just an order, iff it is
(1) irreflexive (i.e., $x \mathbb{P} y \rightarrow x \neq y$ for all x, y), and
(2) transitive.

It is emphasised that in the interest of generality -for much of this subsection (until we say otherwise) - \mathbb{P} need not be a set.

Some people call this a strict order as it imitates the "<" on, say, the natural numbers.
3.1.55 Remark. (1) We will normally use the symbol "<" in the abstract setting to denote any unspecified order \mathbb{P}, and it will be pronounced "less than".

It is hoped that the context will not allow confusion with any concrete use of the symbol $<$ on numbers (say, on the reals, natural numbers, etc.).
(2) If the order $<$ is a subclass of $\mathbb{A} \times \mathbb{A}$-i.e., it is $<: \mathbb{A} \rightarrow \mathbb{A}$ - then we say that $<$ is an order on \mathbb{A}.
(3) Clearly, for any order $<$ and any class $\mathbb{B},<\cap(\mathbb{B} \times \mathbb{B})$ is an order on \mathbb{B}.
3.1.56 Exercise. How clearly? (re (3) above.) Give a simple, short proof.
3.1.57 Example. The concrete "less than", $<$, on \mathbb{N} is an order, but \leq is not (it is not irreflexive). The "greater than" relation, $>$, on \mathbb{N} is also an order, but \geq is not. Of course, $>=<^{-1}$.

In general, it is trivial to verify that \mathbb{P} is an order iff \mathbb{P}^{-1} is an order. Exercise!
3.1.58 Example. \emptyset is an order. Since for any $\mathbb{A}, \emptyset \subseteq \mathbb{A} \times \mathbb{A}, \emptyset$ is also an order on \mathbb{A} for the arbitrary \mathbb{A}.
3.1.59 Example. The relation \in is irreflexive by the well known $A \notin A$, for all A. It is not transitive though. For example, if a is a set (or atom), then $a \in\{a\} \in\{\{a\}\}$ but $a \notin\{\{a\}\}$. So it is not an order.

Let $M=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\}$. The relation $\varepsilon=\in \cap(M \times M)$ is transitive and irreflexive, hence it is an order (on M). Verify!
3.1.60 Example. \subset is an order, \subseteq-failing irreflexivity- is not.
3.1.61 Example. Consider the order \subset again. In this case we have none of $\{\emptyset\} \subset\{\{\emptyset\}\},\{\{\emptyset\}\} \subset\{\emptyset\}$ or $\{\{\emptyset\}\}=\{\emptyset\}$. That is, $\{\emptyset\}$ and $\{\{\emptyset\}\}$ are non comparable items. This justifies the qualification partial for orders in general (Definition 3.1.66).

On the other hand, the "natural" $<$ on \mathbb{N} is such that one of $x=y, x<y$, $y<x$ always holds for any x, y. That is, all (unordered) pairs x, y of \mathbb{N} are comparable under $<$. This is a concrete example of a total order (see the "official definition" below: 3.1.67).

While all orders are "partial", some are total ($<$ above) and others are nontotal (\subset above).
3.1.62 Definition. Let $<$ be a partial order on \mathbb{A}. We set

$$
\leq \stackrel{\text { Def }}{=} \boldsymbol{\Delta}_{\mathbb{A}} \cup<
$$

We pronounce \leq "less than or equal". $\boldsymbol{\Delta}_{\mathbb{A}} \cup>$ is denoted by \geq and is pronounced "greater than or equal".

Let us call \leq a reflexive order.
(1) In plain English, given $<$ on \mathbb{A}, we define $x \leq y$ to mean

$$
x<y \vee \overbrace{x=y}^{\text {equality is } \Delta_{\mathbb{A}}}
$$

for all x, y in \mathbb{A}.
(2) The definition of \leq depends on \mathbb{A} due to the presence of $\boldsymbol{\Delta}_{\mathbb{A}}$. There is no such dependency on a "reference" class in the case of $<$.
(3) We remind ourselves once more here that the symbols $<$ and \leq-and their pronunciations- do NOT imply that we are talking about the specific ones on numbers. It is just a harmless (I hope) notational devise, but unless said explicitly otherwise, " $<$ " and " $\leq "$ are any orders.
3.1.63 Lemma. For any $<: \mathbb{A} \rightarrow \mathbb{A}$, the associated relation \leq on \mathbb{A} is reflexive, antisymmetric and transitive.

Proof. (1) Reflexivity is trivial.
(2) For antisymmetry, let $x \leq y$ and $y \leq x$. If $x=y$ then we are done, so assume the remaining case $x \neq y$ (i.e., $\left.(x, y) \notin \boldsymbol{\Delta}_{\mathbb{A}}\right)$. Then the hypothesis becomes $x<y$ and $y<x$, therefore $x<x$ by transitivity, contradicting the irreflexivity of $<$.
(3) As for transitivity let $x \leq y$ and $y \leq z$.
(a) If $x=z$, then $x \leq z$ (see the \langle-remark after 3.1.62) and we are done.
(b) The remaining case is $x \neq z$. Now, if it is $x=y$ or $y=z$ (but not both (why?)), then we are done again. So it remains to consider $x<y$ and $y<z$. By transitivity of $<$ we get $x<z$, hence $x \leq z$, since $<\subseteq \leq$.
3.1.64 Lemma. Let \mathbb{P} on \mathbb{A} be reflexive, antisymmetric and transitive.

Then $\mathbb{P}-\boldsymbol{\Delta}_{\mathbb{A}}$ is an order on \mathbb{A}.
Proof. Since

$$
\begin{equation*}
\mathbb{P}-\boldsymbol{\Delta}_{\mathbb{A}} \subseteq \mathbb{P} \tag{1}
\end{equation*}
$$

it is clear that $\mathbb{P}-\boldsymbol{\Delta}_{\mathbb{A}}$ is on \mathbb{A}. It is also clear that it is irreflexive. We only need verify that it is transitive.

So let

$$
\begin{equation*}
(x, y) \text { and }(y, z) \text { be in } \mathbb{P}-\boldsymbol{\Delta}_{\mathbb{A}} \tag{2}
\end{equation*}
$$

By (1) (or (2))

$$
\begin{equation*}
(x, y) \text { and }(y, z) \text { are in } \mathbb{P} \tag{3}
\end{equation*}
$$

hence

$$
(x, z) \in \mathbb{P}
$$

by transitivity of \mathbb{P}.
Can $(x, z) \in \boldsymbol{\Delta}_{\mathbb{A}}$, i.e., can $x=z$? No, for antisymmetry of \mathbb{P} and (3) would imply $x=y$, i.e., $(x, y) \in \boldsymbol{\Delta}_{\mathbb{A}}$ contrary to (2).

So, $(x, z) \in \mathbb{P}-\boldsymbol{\Delta}_{\mathbb{A}}$.
3.1.65 Remark. Often in the literature, but decreasingly so, it is the "reflexive order" $\leq: \mathbb{A} \rightarrow \mathbb{A}$ that is defined as a "partial order" by the requirements that it is reflexive, antisymmetric and transitive. Then $<$ is obtained as in Lemma 3.1.64, namely, as " $\leq-\boldsymbol{\Delta}_{\mathbb{A}}$ ". Lemmas 3.1.63 and 3.1.64 show that the two approaches are interchangeable, but the "modern" approach of Definition 3.1 .54 avoids the nuisance of having to tie the notion of order to some particular "field" \mathbb{A} (3.1.6).

For us " \leq " is the derived notion defined in 3.1.62.
3.1.66 Definition. (PO Class) If $<$ is an order on a class \mathbb{A}, we call the informal pair $(\mathbb{A},<)^{\dagger}$ a partially ordered class, or PO class.

If $<$ is an order on a set A, we call the pair $(A,<)$ a partially ordered set or $P O$ set. Often, if the order $<$ is understood as being on \mathbb{A} or A, one says that " \mathbb{A} is a PO class" or " A is a PO set" respectively.
3.1.67 Definition. (Linear order) A relation $<$ on \mathbb{A} is a total or linear order on \mathbb{A} iff it is
(1) An order, and
(2) For any x, y in \mathbb{A} one of $x=y, \quad x<y, \quad y<x$ holds - this is the so-called "trichotomy" property.

If \mathbb{A} is a class, then the informal pair $(\mathbb{A},<)$ is a linearly ordered class -for short, a LO class.

If \mathbb{A} is a set, then the pair $(\mathbb{A},<)$ is a linearly ordered set -for short, a $L O$ set.

One often calls just \mathbb{A} a LO class or LO set (as the case warrants) when $<$ is understood from the context.
3.1.68 Example. The standard $<: \mathbb{N} \rightarrow \mathbb{N}$ is a total order, hence $(\mathbb{N},<)$ is a LO set.
3.1.69 Definition. (Minimal and minimum elements) Let $<$ be an order and \mathbb{A} some class.

We are not postulating that $<$ is on \mathbb{A}.
An element $a \in \mathbb{A}$ is $a<-$-minimal element in \mathbb{A}, or $a<-$ minimal element of \mathbb{A}, iff $\neg(\exists x \in \mathbb{A}) x<a$-in words, there is nothing below a in \mathbb{A}.
$m \in \mathbb{A}$ is $a<$-minimum element in \mathbb{A} iff $(\forall x \in \mathbb{A}) m \leq x$.
We also use the terminology minimal or minimum with respect to $<$, instead of $<$-minimal or $<$-minimum.

[^0]If $a \in \mathbb{A}$ is $>$-minimal in \mathbb{A}, that is $\neg(\exists x \in \mathbb{A}) x>a$, we call a a $<$-maximal element in \mathbb{A}. Similarly, a $>$-minimum element is called a $<$-maximum.

If the order $<$ is understood, then the qualification "<-" is omitted.
3.1.70 Remark. In particular, if $a(\in \mathbb{A})$ is not in the field $\operatorname{dom}(<) \cup \operatorname{ran}(<)$ (cf. 3.1.6) of $<$, then a is both $<$-minimal and $<$-maximal in \mathbb{A}. For example, $(\exists x \in \mathbb{A}) x<a$ is false in this case since if, for some x, we have $x \in \mathbb{A}$ and also $x<a$, then $a \in \operatorname{ran}(<)$; impossible.

Because of the duality between the notions of minimal/maximal and minimum/maximum, we will mostly deal with the <-notions whose results can be trivially translated for the >-notions.

Note how the notation learnt from 3.1 .51 and 3.1 .50 and 3.1 .53 can simplify

$$
\begin{equation*}
\neg(\exists x \in \mathbb{A}) x<a \tag{1}
\end{equation*}
$$

(1) says that no x is in both \mathbb{A} and $(a)>\dagger^{\dagger}$

That is, a is $<$-minimal in \mathbb{A} iff

$$
\begin{equation*}
\mathbb{A} \cap(a)>=\emptyset \tag{2}
\end{equation*}
$$

3.1.71 Example. 0 is minimal, also minimum, in \mathbb{N} with respect to the natural ordering.

In $\mathbf{P}(\mathbb{N}), \emptyset$ is both \subset-minimal and \subset-minimum. On the other hand, all of $\{0\},\{1\},\{2\}$ are \subset-minimal in $\mathbf{P}(\mathbb{N})-\{\emptyset\}$ but none are \subset-minimum in that set.

Observe from this last example that minimal elements in a class are not unique.
3.1.72 Remark. (Hesse diagrams) There is a neat pictorial way to depict orders on finite sets known as "Haste diagrams". To do so one creates a so-called "graph" of the finite PO set $(A,<)$ where $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

How? The graph consists of n nodes - which are drawn as points- each labeled by one a_{i}. The graph also contains 0 or more arrows that connect nodes. These arrows are called edges.

When we depict an arbitrary R on a finite set like A we draw one arrow (edge) from a_{i} to a_{j} iff the two relate: $a_{i} R a_{j}$.

In Hesse diagrams for PO sets $(A,<)$ we are more selective: We say that b covers a iff $a<b$, but there is no c such that $a<c<b$. In a Hesse diagram we will

1. draw an edge from a_{i} to a_{j} iff a_{j} covers a_{i}.
2. by convention we will draw b higher than a on the page if b covers a.

$$
{ }^{\dagger}(a)>=\{x: a>x\}=\{x: x<a\} \text { 3.1.53. }
$$

3. given the convention above, using "arrow-heads" is superfluous: our edges are plain line segments.

So, let us have $A=\{1,2,3\}$ and $<=\{(1,2),(1,3),(2,3)\}$.

The above has a minimum (1) and a maximum (3) and is clearly a linear order.
A slightly more complex one is this $(A,<)$, where $A=\{1,2,3,4\}$ and $<=$ $\{(1,2),(4,2),(2,3),(1,3),(4,3)\}$.

This one has a maximum (3), two minimal elements (1 and 4) but no minimum, and is not a linear order: 1 and 4 are not comparable.
3.1.73 Lemma. Given an order $<$ and a class \mathbb{A}.
(1) If m is a minimum in \mathbb{A}, then it is also minimal.
(2) If m is a minimum in \mathbb{A}, then it is unique.

Proof. (1) Let m be minimum in \mathbb{A}. Then

$$
\begin{equation*}
m \leq x, \text { that is, } m=x \vee m<x \tag{i}
\end{equation*}
$$

for all $x \in \mathbb{A}$. Now, prove that there is no $x \in \mathbb{A}$ such that $x<m$.
OK, let us go by contradiction:

Let

$$
\begin{equation*}
\mathbb{A} \ni a<m \tag{ii}
\end{equation*}
$$

By (i) I also have

$$
\begin{equation*}
m=a \vee m<a \tag{iii}
\end{equation*}
$$

Now, by irreflexivity, (ii) rules out $a=m$. So, (iii) nets $m<a$. (ii) and (iii) and transitivity yield $a<a$; contradiction ($<$ is irreflexive). Done.
(2) Let m and n both be minima in \mathbb{A}. Then $m \leq n$ (with m posing as minimum) and $n \leq m$ (now n is so posing), hence $m=n$ by antisymmetry (Lemma 3.1.63).
3.1.74 Example. Let m be <-minimal in \mathbb{A}.

Let us attempt to "show" that it is also <-minimum (this is, of course, doomed to fail due to 3.1 .71 and 3.1 .73 (2) -but the "faulty proof" below is interesting):

By 3.1 .69 we have that there is no x in \mathbb{A} such that $x<m$.
Another way to say this is:

For all $x \in \mathbb{A}$, I have the negation of " $x<m$ ", that is, I have $\neg x<m$.
But from "our previous math" (high school? university? Netflix?) $\neg x<m$ is equivalent to $m \leq x$.

Thus (1) says $(\forall x \in \mathbb{A}) m \leq x$, in other words, m is the minimum in \mathbb{A}.
Do you believe this? (Don't!) If the order is not total, then I can fail to have all three of $x<m, x=m, m<x$ and thus $\neg m<x$ and $x<m \vee x=m$ are NOT equivalent. See the counterexample to such expectation in 3.1.61 and also 3.1.71.
3.1.75 Lemma. If $<$ is a linear order on \mathbb{A}, then every minimal element is also minimum.

Proof. The "false proof" of the previous example is valid under the present circumstances.

The following type of relation has fundamental importance for set theory, and mathematics in general.
3.1.76 Definition. 1. An order $<$ satisfies the minimal condition, for short it has $M C$, iff every nonempty \mathbb{A} has <-minimal elements.
2. If a total order $<: \mathbb{B} \rightarrow \mathbb{B}$ has MC , then it is called a well-ordering on (or of) the class \mathbb{B}.

[^1]3. If $(\mathbb{B},<)$ is a LO class (or set) with MC, then it is a well-ordered class (or set), or WO class (or WO set).

2 3.1.77 Remark.

II What Definition 3.1 .76 says in case 1. is —see (2) in 3.1.70 "if, for some fixed order $<$ the following statement

$$
\begin{equation*}
\emptyset \neq \mathbb{A} \rightarrow(\exists a \in \mathbb{A}) \mathbb{A} \cap(a)>=\emptyset \tag{1}
\end{equation*}
$$

is provable in set theory, for any \mathbb{A}, then we say that $<$ has $M C$ ".
The following observation is very important for future reference:
If \mathbb{A} is given via a defining property $F(x)$, as

$$
\mathbb{A} \stackrel{D e f}{=}\{x: F(x)\}
$$

then (1) translates -in terms of $F(x)$ - into

$$
\begin{equation*}
(\exists a) F(a) \rightarrow(\exists a)(F(a) \wedge \neg(\exists y)(y<a \wedge F(y))) \tag{2}
\end{equation*}
$$

Conversely, for each formula $F(x)$ we get a class $\mathbb{A}=\{x: F(x)\}$ and thus -if \mathbb{A} has MC with respect to <- we may express this fact as in (2) above.

[^0]: ${ }^{\dagger}$ Formally, $(\mathbb{A},<)$ is not an ordered pair since \mathbb{A} may be a proper class and we do not allow class members - e.g., in $\{\mathbb{A},\{\mathbb{A},<\}\}$ - to be proper classes. We may think then of " $(\mathbb{A},<)$ " as informal notation that simply "ties" \mathbb{A} and $<$ together. Alternatively, if we are really determined to have class pairs (we are not!), we can define pairing with proper classes as components, for example as $(\mathbb{A}, \mathbb{B})={ }^{\operatorname{Def}}(\mathbb{A} \times\{0\}) \cup(\mathbb{B} \times\{1\})$. For our part we will have no use for such formality, and will consider $(\mathbb{A},<)$ in only the informal sense.

[^1]: ${ }^{\dagger}$ The term "well-ordering" is ungrammatical, but it is the terminology established in the literature!

